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1 Introduction

The relationship between memory use, nondeterminism, and randomization is central to space-bounded
computation. Whether or not nondeterminism provides computation power that is not present in de-
terministic machines remains an open question. Whether or not randomness can save computation
space, or conversely that all randomized algorithms can be derandomized at a small memory cost
also remains a open problem. Our current understanding is that

L ⊆ SL ⊆ RL ⊆ NL ⊆ Lc

where

L = problems solvable in deterministic logspace
SL = problems solvable in nondeterministic symmetric logspace
RL = problems solvable in polytime randomized logspace
NL = problems solvable in nondeterministic logspace
Lc = problems solvable in deterministic polylog space

Determining which of these containments are actually equalities form a basis of problems which
computer scientists have made progress towards since the advent of the field. This survey will show
one of these particular equalities, L = SL, a result proved by Omer Reingold in 2004 [1]. While the
majority of this paper focuses on this result and summarizes the key points of his paper, we discuss
briefly extensions of this proof in progress towards L = RL as a consequence.

2 Background

This project explores the problem of determining s − t reachability in deterministic log space in an
undirected graph (an SL-complete problem). There are many simple algorithms that solve this prob-
lem; for instance, classical graph traversal algorithms such as depth-first search can solve this prob-
lem in polynomial time (putting USTCON in P). The trouble with such an algorithm is that the
stack depth it required is at worst O(n) in the number of nodes of the graph, thus making it not a
logarithmic-space algorithm. We will show that while it is possible to reduce this space complexity
from linear to logarithmic, the process to do so is not at all trivial and requires careful consideration
of the properties of the given graph. Thus, we will initially formalize how this problem is presented
and how we analyze it. First, we make the following assumption: although subsequent analysis will
deal with higher-level abstractions than Turing Machines, we can imagine our input graph as given
to us on a read-only input tape. Therefore, our measure of space will be a measure of the auxiliary
space we use on a work tape.

In addition, it turns out that we can place USTCON in RL. Namely,

Lemma 2.1. If s and t are connected in d-regular graph G, then a random walk of length O(d2n3 log(n)) from

s reaches t with probability greater than or equal to
1
2

. Proof in Appendix.

While neither DFS nor this probabilistic algorithm solve the question we’re interested in, they do
offer some valuable intuition: namely, that this question is easier on sparse (not very many choices to
make at every node) and well connected graphs (if there exists a path from s to t then there exists a
short path). Graphs which have these nice properties of being sparse yet well connected are known
as expander graphs and are integral in this proof.
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3 Expander Graphs and Their Properties

We begin with some basic definitions regarding graphs [2]:

Definition 3.1. A graph is undirected iff its adjacency matrix is symmetric.

Definition 3.2. A graph is d-regular if each vertex has exactly d edges incident to it.

For the following, let G = (V, E) be an undirected, d-regular graph on n vertices. For every node,
we fix an arbitrary indexing of edges. That is,

Definition 3.3. For a node v, its edge assigning function is

fv : [d] −→ V

where fv(i) is the ith edge adjacent to v (assigned arbitrarily).

In traditional representations of graphs, traversing an edge from u to v does not track which
edge (index) was taken, and instead specifies with respect to the two nodes themselves. We define
another graph representation, which instead defines edges with respect to a single node and an index
according to its edge assigning function:

Definition 3.4. Define the Rotation Map of G as

RotG : [n]× [d] −→ [n]× [d]

where
RotG(v, i) 7→ (w, j)

if fv(i) = w and fw(j) = v.

For the rest of this survey, it is convenient to consider non-bipartite, d-regular graphs for some
d ≥ 3 constant. While these are certainly not properties of every graph, it is easy to convert an
arbitrary graph to one with these properties while preserving s− t connectivity between every pair
of nodes. Namely,

1. To transform a bipartite graph into a non-bipartite graph, simply add a self-loop at every vertex.
This clearly does not change pairwise connectivity, and also causes any graph to no longer be
bipartite.

2. To transform an arbitrary graph into a d-regular graph, simply replace every vertex with a cycle
of length equal to its degree, giving a 3-regular graph. Then, add as many self-loops as necessary
to reach degree d. An example is illustrated below.

Figure 1: Degree 3 transformation on a single node of degree 4
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A key fact for our analysis is that neither of these transformations requires the new graph to be
explicitly stored (which is important for space-bounded computation). Instead, we can just modify
the rotation map: to traverse (v, i), simply traverse (vi, 3) where we assume ‘non-cycle’ edges to be
indexed as 3. Therefore, from here on out we can assume without loss of generality that any graph
we consider is d-regular, and non-bipartite.

Definition 3.5. An expander graph is a graph which is simultaneously well connected and sparse. Over the
following definitions, we’ll explore different metrics which measure how ‘good’ of an expander a graph is.

Definition 3.6. The normalized adjacency matrix or transition probability matrix MG of G is the
adjacency matrix representation of G normalized by d. Equivalently,

Mu,v =
1
d

∣∣∣(i, j) ∈ [d]2 | RotG(u, i) = (v, j)
∣∣∣

For undirected, d-regular graphs, MG will be regular and symmetric, so it has a set of eigenvectors which is a
basis for RV . The eigenvector v1 = [1 · · · 1]T has eigenvalue λ1 = 1. Define λ(G) = λ2.

Lemma 3.7. If G is a connected, d-regular graph, then the spectrum of MG is λ1 > λ2 ≥ · · · ≥ λn where
λ1 = 1. Larger spectral gaps correspond to better expansion properties of the graph.

Proof. We’ve argued that 1 is always an eigenvalue. Suppose there exists some other λ > 1. Then,
there exists corresponding eigenvector v such that MGv = λv. Suppose the entry vk is the largest in
v. Then,

(MGv)k =
1
d ∑
{j,k}∈E

vj ≤
1
d
(dvk) = vk

However, λvk > vk, a contradiction. Therefore, every eigenvalue is at most 1.
Now, we use the connectedness of G to argue that there is only one eigenvector. The quickest way

to do this is to use Perron-Frobenius: MG has no invariant coordinate subspaces (i.e. every proper
subset S of the vertices has neighbors not in S), so it is an irreducible matrix and thus the multiplicity
of the eigenvalue is 1.

Definition 3.8 (spectral expansion γ). A graph G has spectral expansion γ if λ(G) ≤ 1− γ.

The spectral gap can be hard to conceptualize. Here is some intuition: Suppose we are finding the
probability distribution for the end of a random walk, i.e. Mℓπ for starting position π.

π =
n

∑
i=1

civi =⇒ Mℓπ =
n

∑
i=1

λℓ
i civi

Since λ1 is always 1, the value of this sum is most impacted by λ2.

Definition 3.9. An undirected, d-regular graph G on n vertices with λ(G) = λ is referred to as an (n, d, λ)-
expander graph from this point forwards. We note that it is possible to think of any graph as an expander (with
potentially zero or very poor expansion).

Definition 3.10 ((K, A) vertex expansion). A graph G is a (K, A) vertex expander if for every set S of size
at most K, the neighborhood N(S) =

⋃
v∈S

N(v) has size at least A · |S|.

Theorem 3.11 (spectral expansion =⇒ vertex expansion). If G is a regular digraph with γ = 1− λ

spectral expansion for some λ ∈ [0, 1], then for every α ∈ [0, 1], G is an
(

αn,
1

(1− α)λ2 + α

)
expander.

In particular G is a
(n

2
, 1 + γ

)
expander.
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Proof. Adapted from [3]. To prove this, we first give some definitions and lemmas which will help us
get to the result of spectral expansion implies vertex expansion.

Definition 3.12. For some probability distribution π, the collision probability, denoted CP(π), is the proba-
bility that two independent samples from π are equal.

Definition 3.13. The support of some probability distribution π, denoted Supp(π), is {x | πx > 0}.

Lemma 3.14. If π is a probability distribution over the vertices, and u is the uniform probability distribution
over the vertices, then

CP(π) = ∥π∥2 = ∥π − u∥2 +
1
n

Proof. The first equality is, by definition, of collision probability. Then, we note that (π − u) ⊥ u so

∥π∥2 = ∥u∥2 + ∥π − u∥2

Finally, we note that ∥u∥2 is just
1
n

since u is the uniform distribution.

Lemma 3.15.
CP(π) ≥ 1

|Supp(π)|
Furthermore,

CP(π) =
1

|Supp(π)| ⇐⇒ π is uniform on Supp(π)

Proof.

1 = ∑
x∈Supp(π)

πx by the definition of Supp

≤
√
|Supp(x)| ∗

√
∑
x

π2
x by Cauchy-Schwartz (with equality iff uniform)

=
√
|Supp(π) ∗

√
CP(π) by definition of CP

We note that the proof can be made somewhat simpler by applying the method of the previous proof,
and comparing π with the uniform distribution over the support of π.

Finally, we can finish up the proof of Theorem 3.11. First, note that since MG is a real symmetric

matrix, its eigenvectors are orthogonal. Thus, letting u =

[
1
n
· · · 1

n

]T
be the eigenvector of eigen-

value λ1 = 1, we have λ2 = max
v:v⊥u

∥Mv∥
∥v∥ . For each such v, we can find a probability distribution

π over the vertices such that π − u is a multiple of v (and vice versa); thus, λ2 = max
π

MG(π − u)
π − u

.

Using this alternate definition for λ, we have from the previous lemmas that

CP(MGπ)− 1
n
= ∥MGπ − u∥2

CP(MGπ)− 1
n
=
∥MG(π − u)∥2

∥π − u∥2 · ∥π − u∥2

≤ λ2∥π − u∥2

= λ2
[

CP(π)− 1
n

]
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Consider any subset S of up to αn vertices. If we take π to be the uniform distribution on these

vertices and use the above equation, we can learn about N(S): in particular,
1

|N(S)| ≤ CP(MGπ) so

(
1

|N(S)| −
1
n

)
≤ λ2 ·

(
1
|S| −

1
n

)
1

N(S)
≤ λ2

|S| +
1− λ2

n
1

N(S)
≤ λ2

|S| +
α

|S|n

|S| · 1
λ2 + α(1− λ2)

≤ |N(S)|,

where we lower bound n by |S|/α because the blue quantity is positive.

Lemma 3.16. For every d-regular, connected, non-bipartite graph G on [n], we have that λ(G) ≤ 1− 1
dn2 .

Proof. [4], [5] Suppose v is an eigenvector with eigenvalue λ(G). Then, we know it is orthogonal to

the first eigenvector v1 = [1 · · · 1]T so
n

∑
i=1

vi = 0. By a basic counting argument, we see that

vT (1− λ2) v = vT(I −MG)v

=
n

∑
i=1

v2
i −

2
d ∑
{i,j}∈E

vivj

=
1
d ∑
{i,j}∈E

(vi − vj)
2,

Normalize v so that ∥v∥2 = 1, vi > 0 and vj < 0 are the largest and smallest entries–note that they
must have opposite sign because all the entries sum to 0. Then, find a path i, u1, . . . , uℓ, j in G and
keep only the terms in the previous summation which correspond to edges along the path:

1− λ2 ≥
1
d

[
(vi − vu1)

2 +
ℓ−1

∑
k=1

(vuk − vuk+1)
2 + (vuℓ

− vj)
2

]

≥ 1
d(ℓ+ 1)

[
(vi − vu1) +

ℓ−1

∑
k=1

(vuk − vuk+1) + (vuℓ
− vj)

]2

=
1

d(ℓ+ 1)
(vi − vj)

2 =
1

d(ℓ+ 1)
(|vi|+ |vj|)2 >

1
dn2 ,

where we used Cauchy-Schwarz on a = [1 · · · 1], b = [vi − vu1 · · · vuℓ
− vj] to get the second line

and used that ∥v∥2 ≤ n(max(|vi|, |vj|)2 = 1 =⇒ (|vi|+ |vj|)2 >
1
n

and ℓ+ 2 ≤ n =⇒ 1
ℓ+ 1

>
1
n

in the last line.

Remark 3.17. In the above lemma we used a trivial upper bound for ℓ, so that the result matches lemma 2.5 in

the paper. A similar technique can be used to show that λn ≥ −1 +
1

nd(D + 1)
, and this result is cited in the

paper. But the proof of the original lemma is not given, perhaps it is too trivial or standard.
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Suppose G a graph with N vertices is a
(

N
2

, A
)

vertex expander for some A > 1. In this specific

case, we note some additional properties. Namely,

Lemma 3.18. G is connected.

Proof. Suppose for a contradiction that G is not connected. Let S be the smallest connected component

(by number of vertices) of G. We know by assumption that |S| ≤ N
2

. By the definition of vertex

expander, |N(S)| ≥ A|S|. However, by assumption, N(S) = S, a contradiction. Therefore, G must be
connected.

Lemma 3.19. For any two u, v ∈ V there is a path of O(log N) edges from u to v.
More concisely, G has logarithmic diameter.

Proof. Consider arbitrary vertices s, t in G. We argue that they are at most O(log N) apart. By the
definition of vertex expander, the number of vertices within i of S is at least Ai = (1 + ϵ)i. That is,

there are more than
N
2

vertices within O(log(n)) distance of s. Make the analogous argument from t

(since the expansion only applies for sets at most size
N
2

), and find a vertex which is within O(log(n))
hops from both s and t. Finally, stitch the paths together to conclude that the distance between s and
t is O(log N).

Theorem 3.20. There exists some constant De and a ((De)
16, De,

1
2
)-graph. Proof sketch given in Appendix.

3.1 The Powering Graphs and Zig-Zag Product

It is not guaranteed that our input graph G is a “good” expander; thus, we need to apply transforma-
tions to it in order to increase its expansion while not drastically increasing its degree (and, of course,
while maintaining connectivity). The transformations we will consider here are graph powering and
the zigzag product. Powering a graph is relatively straightforward:

Definition 3.21. For any graph G, Gk is the kth power of G, determined by taking the normalized adjacency
matrix to the kth power. Interpreted visually, the kth power of the graph adds edges between s and t in G if
there is a path of length k between s and t in G.

This operation is helpful because it improves connectivity properties. However, the increased
connectivity does come at a cost:

Lemma 3.22. If G is an (N, D, λ) graph, then Gk is an (N, Dk, λk) graph.

Proof. The normalized adjacency matrix of Gk is simply the normalized adjacency matrix of G raised
to the kth power. Thus, the degrees and eigenvalues all get raised to the kth power.

That is, while powering a graph improves connectivity, it simultaneously increases degree. Re-
call that we’d like expander graphs to be relatively sparse. Thus, we introduce the zigzag product:
it is a product on two graphs which is designed to reduce degree without affecting expansion too
much. More specifically, given some (N, D, λ)-graph G and some other (D, d, α)-graph H (these are
importantly the same D), we can define the zigzag product as follows:

• G z⃝H is a graph with nodes in V(G)×V(H)
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• Its edges, defined in terms of a rotation map, are as follows:

Algorithm 1 Computing the Rotation Map of the Zigzag Product
procedure RotG z⃝H((a, x), (i, j))

(a′, i′)← (RotH(a, i))
(w, b′)← (RotG(v, a′))
(b, j′)← (RotH(b′, j))
return ((w, b), (j′, i′))

end procedure

Qualitatively, we can imagine making a copy of Hv for each node v ∈ V(G) and connected each
“cloud” to every other cloud. Then, the edges in G z⃝H are a subset of paths of length 3 where the
first and third edges are within a single H-cloud, and the second edge is between H-clouds. That is,
a single edge in our zigzag product graph, is of the form short-long-short. We take enough of such
paths such that the rotation map as defined above is well and uniquely defined.

Lemma 3.23. If H has degree d, then G z⃝H has degree d2.

Proof. Edges in the zigzag product are defined by two edge indices in H: that is, it is two ‘short’
edges. Since each ‘short’ edge can be identified by a value in d, it follows that degree is d2. Critically,
for constant sized d, d2 is also constant.

Lemma 3.24. Given the restrictions on G and H earlier, we have that λ(G z⃝H) ≤ 1− 1
2

(
1− α2

)
(1− λ).

Namely, the expansion properties of G z⃝H are not that much worse than those of G or H.

Proof. In [6] show the following theorem:

Theorem 3.25. If G is an (N, D, λ)-graph and H is a (D, d, α) graph, then G z⃝H is an (ND, d2, f (λ, α))
graph, where

f (λ, α) =
1
2
(1− α2)λ +

1
2

√
(1− α2)2λ2 + 4α2

.

From this, we note that λ ≤ 1, and write

1
2
(1− α2)λ +

1
2

√
(1− α2)2λ2 + 4α2 ≤ 1

2
(1− α2)λ +

1
2

√
(1− α2) + 4α2

=
1
2
(1− α2)λ +

1
2
(1 + α2) = 1− 1

2
(1− α2)(1− λ).

From this, we can see that the spectral gap of G z⃝H, or 1− f (λ, α), is bounded from below by
1
2
(1− α2)(1− λ); as (1− λ) is the spectral gap of G, and (1− α2) is bounded from below by (1− α)

for α ∈ [0, 1], we have that this quantity is also not much worse than a constant factor times the
spectral gap of H.

3.2 Examples

Consider the following two graphs G and H:
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(a) Graph G with constant degree 3 (b) Expander H with 3 nodes

Figure 2: 2 graphs for which the zigzag product is well defined.

The colors are simply a visual way of representing edge indices which may be easier for our
reader to manually verify. Notably, the colored edges correspond to the colors of the nodes in the
expander. Consider the effect of the zigzag product on node a and its neighbors (the rest of the graph
is transformed analogously):

(a) Graph G with constant degree 3 (b) Subedges in the zigzag of G and H
around node a

Figure 3: Zigzag product applied on node a, showing subedges

We note that every node (i.e. a and its neighbors in this local example) has been replaced by a copy
of H. Also, the edge between cloud a and cloud b is connected via the green node in the expander,
since that corresponds to the edge coloring shown on the left. In the resulting graph on the right, the
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black edges are short edges and the red edges are long edges. Recall that the shown edges here are
not actually edges in the zigzag product: the edges of the zigzag product are actually a subset of all
paths of length 3 in this graph of the form short-long-short. Visually:

Figure 4: Edges in the zigzag product

The dotted lines above show the red and black edges we pictured earlier. The edges in the final
zigzag product will, however, correspond to the solid black line. As we consider the zigzag product
in the proof of USTCON, it will often be helpful to think of edges of the zigzag product as paths of
length 3 in the underlying graphs.

4 Connectivity Algorithms

4.1 Connectivity in Log-Diameter Graphs

Definition 4.1. Let the diameter of some graph G be the length of the longest shortest path between any 2
nodes.

Then, the following lemma follows easily:

Lemma 4.2. If G is a d-regular undirected graph over n vertices for d = O(1) and diameter of ℓ = O(log n),
then we can determine s− t connectivity in log2(n) space. This follows from just running a DFS, which will
have at most logarithmically many recursive calls.

It is actually quite easy to improve this algorithm to run in O(log(n)) space. In a normal DFS
exploration, we keep track of our path of visited nodes, each of which takes log(n) space to store.
However, we have the handy feature of d-regularity which we do not adequately exploit. Therefore,
if we simply store indices of forwards and backwards pointers, rather than the nodes themselves, we
have reduce the stack space of each recursive call down to O(1).

Lemma 4.3. If G is a d-regular undirected graph over n vertices for d = O(1) and diameter of ℓ = O(log n),
then we can determine s− t connectivity in log(n) space.

Proof. We make use of the rotation map definition of graphs. We also define the inverse of the rotation
map to take in u, v and return the index δ for which Rot(v, δ) = u. Then,
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Algorithm 2 DFS on Undirected Graph of Log Diameter in Logspace
i← L ▷ i is a global variable in memory
u← s ▷ u is a global variable in memory
procedure DFS

if i = 0 then return false
else if u = t then return true
else

i← i− 1
for δ ∈ {1, . . . , d} do

(v, δ)← Rot(u, δ)
u← v
DFS() ▷ DFS is called recursively at most ℓ times
(u, )← Rot(u, δ)

end for
i← i + 1

end if
end procedure

Now, in every stack frame, we just need to store δ, which is constant sized. Therefore, we have 1
log-space element in global memory, combined with log stack-space for the recursive procedure, for
a total of O(log(n)) as desired.

Therefore, if we can transform our graph into this structure: d-regular for constant sized d and
logarithmic in diameter, then Algorithm 2 will give us a procedure for deterministic undirected reach-
ability. We previously showed in Figure 1 that we can achieve constant degree. Therefore, the rest
of this paper focuses on how to achieve log diameter. That is, we define some transformation τ such
that τ(G) is c-regular for some constant c and logarithmic in diameter, and also achieves precisely
the same connectivity properties as G, and we can implicitly compute τ(G) is logarithmic auxiliary
space.

4.2 Transforming an Arbitrary Graph into an Expander

Definition 4.4. Given some
(

D16, D, λ
)

graph G and
(

D, d,
1
2

)
expander H for D = O(1), we define the

following family of graphs inductively: G0 = G, Gt+1 = (Gt z⃝H)8.

Lemma 4.5. Given some graph G that is an (N, D, λ) expander, for any s, t ∈ V(G), s, t are connected if
and only if (s, 1), (t, 1) are connected in G z⃝H. That is, the zigzag product preserves connectivity on expander
graphs.

We omit the proof of the above lemma as it is shown directly in [1].

Lemma 4.6. Gℓ has spectral gap of at least
1
2

for some ℓ = 2⌈log DN2⌉ ∈ O(log N).

Proof. Recall Lemma 3.24 with α =
1
2

. Then, we have that the expansion of G z⃝H is bounded by

1− 1
2

(
1− (

1
2
)2
)
(1− λ) =

3
8
(1− λ)

Intuitively, the above bound shows that taking the zig-zag product with H does not greatly decrease
the expansion properties of G. We also note that powering a graph by a factor of t also raises the
bound of the magnitude of the second-largest eigenvalue by a power of t.
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We also have from Lemma 3.16 that for every D-regular, connected, non-bipartite graph on [N], a
bound for the magnitude of its second largest eigenvalue is 1− 1/DN2.

From these facts, we now lower bound the spectral gap of Gi (by upper bounding the magnitude

of its second-largest eigenvalue). We first note that (1− 1/DN2)2ℓ <
1
2

; thus, all we have to show

that is that for a given transformation, λ(Gi) ≤ max(λ(Gi−1)
2,

1
2
), as in the first case, the transforma-

tion will make the second largest eigenvalue closer to
1
2

at least as quickly as squaring it would (and

squaring it ℓ times will always get it under
1
2

), and in the second case, the second largest eigenvalue

is already
1
2

.

To show this, note that λ(Gi−1 z⃝H) ≤ 1− 3
8
(1− λ) < 1− 1

3
(1− λ), where λ = λ(Gi−1). Raising

both sides to the power of 8 (as graph powering also raises all its eigenvalues to that power), we get

λ((Gi−1 z⃝H)8) = λ(Gi) < (
1
3
(1− λ))8. Finally, we can verify that if λ <

1
2

, then λ(Gi) <

(
5
6

)8
<

1
2

,

and otherwise, that (
1
3
(1− λ))4 ≤ λ and thus that λ(Gi) ≤ λ2. The lemma then indeed follows.

4.3 Undirected Connectivity Implementation in Logspace

We’d like to simply compute GL as defined above, and then run Algorithm 2. However, we cannot
actually compute out the graph GL explicitly since storing it will take too much space. We are only
able to store the complete original graph because it is given to us on the read-only input tape, which
we cannot overwrite. Thus, any explicitly computed variation of G will take more space than what
we have. We therefore give a procedure which computes transitions in GL on the fly; in particular, we
define an algorithm which can compute specific values of Rott in log space.

Suppose we have a log-space algorithm Rott(γ). For some global variable u in memory, it traverses
from u along the γth edge in the graph Gt. If u’s γth neighbor is some node v, then this procedure
reassigns the spot in memory for u to v and recurses. Finally, it returns γ′, the index for which u
is v’s γ′th neighbor. Then, we can modify our previous algorithm to work on GL rather than G by
computing values of Rott on the fly:
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Algorithm 3 DFS on an Implicit Graph
i← L ▷ i is a global variable in memory
u← (s, 1ℓ+1) ▷ u is a global variable in memory
procedure DFS ▷ Note that we no longer take an argument node

if i = 0 then return false
end if
if u = (t, 1ℓ+1) then return true
end if
i← i− 1
for γ ∈ {1, . . . , D16

e } do
γ′ ← ROTℓ(γ) ▷ Discard all but constant space after subroutine call
DFS() ▷ DFS is called recursively at most ℓ times
ROTℓ(γ

′) ▷ This backtracks back to original u
end for
i← i + 1

end procedure

Since we are now traversing on GL rather than G, we cannot just start with s and look for t as these
are not nodes in GL. If we consider the definition of GL, we know

V(GL) = V((GL−1 z⃝H)8) = V(GL−1 z⃝H) = V(GL−1 × H) = V(G0 × · · · × H) = (v, x)

where v ∈ V(G0), x ∈ [De]
ℓ+1. Therefore, our starting node we fix to be (s, 1ℓ+1) and our ending

node is (t, 1ℓ+1). We note that since ℓ is logarithmic, 1ℓ takes logarithmic space: therefore, storing the
identifier of a node in this derived graph is still log-space.

Since i is initialized to be ℓ ∈ O(log(n)), this algorithm makes at most log(n) recursive calls. At each
depth level, we need to store γ across the recursive call. γ is by definition a constant. At each depth
level, we also need to do all the work associated with making a call to ROTt. However, this is stack
space that is reusable. Therefore, at any one instant, this procedure uses at most log(n)+ log(n) ∗O(1)
(space used to compute ROT plus log depth levels times constant space per level), which is indeed
logarithmic.

Therefore, it remains to show the procedure to compute ROT.
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Algorithm 4 Computing Values of Rott(u, δ) for Implicit Graph Gt

procedure ROTt(γ) ▷ Returns only the backwards index: takes too many bits to store nodes
if t = 0 then

Look up Rot(u, γ) for G0
end if
u ∈ V((Gt−1) z⃝H)8

γ = (γ1, . . . γ8) ∈ [D2
e ]

8

Allocate memory for γ′ ∈ [D2
e ]

8

for i = 1 . . . 8 do
u = (vi, ai) ∈ V(Gt−1)×V(H)
γi = (αi, βi) ∈ [De]

2

▷ Compute RotGt−1 z⃝H(ui, γi)

(a′i, α′i) = RotH(ai, αi) ▷ SHORT: Read directly from H
u← vi ▷ Traverse one node forwards
b′i = ROTt−1(a′i) ▷ LONG: Recursive call to procedure
(bi, β′i) = RotH(b′i , βi) ▷ SHORT: Read directly from H
γ′i = (β′i, α′i) ▷ Use previously allocated memory to store γ′i
u← (u, bi)

end for
return γ′ ▷ This procedure DFSes from u. γ′ returns the backpointer.

end procedure

A single edge in GL is a series of 8 edges in (GL−1 z⃝H), which we represent with ui’s. Similarly, γ
is really a sequence of indices in H. From there our computations are exactly those of the definition
of the zigzag product, only when we go to evaluate RotL−1, we do not have this value anywhere and
must recursively compute it using this procedure. We also can’t pass around nodes as arguments and
returns, as they take up too much memory, so we allocate a single global variable that we overwrite
using saved pointers (which are constant space). We note that since L is logarithmic, this procedure
will recurse O(log(n)) times. At each level of recursion, we track γ, γ′ which are both constant space.
We also have auxiliary variables such as i, t which are clearly constant. Therefore, this recursive
procedure can be completed in log space.

5 Consequences, & Extensions

5.1 SL = L

Recall that SL is the space of problems solvable with a nondeterministic symmetric Turing Machine.
Therefore, we can think of this as a problem of determining whether there exists a path between
start and accepting configurations in a symmetric Turing machine, making USTCON a complete
problem for the complexity class. As USTCON, an SL-complete problem, has now been shown to
be solvable in deterministic log space, this has the implication that SL = L, thus rendering the SL
complexity class, which had been developed specifically for the purposes of analyzing USTCON and
its equivalent problems, effectively useless. All these problems were now also simply in L.

5.2 Progress Towards RL = L

Reingold’s result regarding USTCON can be extended towards showing derandomization of RL. To-
wards the beginning of this survey, we saw an RL algorithm for USTCON - therefore, the proof we’ve
presented was actually a specific case of RL derandomization. It turns out that we can generalize this
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proof more. In particular, we can show a deterministic log-space algorithm for directed s-t connec-
tivity in graphs such that every node has the property where its in-degree equals its out-degree. The
below is a high level summary of Reingold’s approach [7] to this problem - as it is not the focus of our
survey, we omit proofs and low level details.

Before discussing the approach, it is helpful to consider the structure undirected graphs give (as
opposed to directed graphs). The obvious difference is that edges are reversible. Another property
is the fact that in undirected graphs, the stationary distribution of a walk is such that the probability
of a vertex is proportional to its degree. This well-behaved-ness turns out to be central, and indeed
directed graphs with the additional structure of equal in- and out-degree also have this property. The
key idea with the well-behaved stationary distribution is that such graphs can be reduced to regu-
lar graphs where the stationary distribution is uniform. The study of directed graphs requires us to
modify/expand the relevant terminology we use. In particular:

Definition 5.1. An n× n matrix M is called a Markov chain on the state space [n] if for every u ∈ [n], it
holds that ∑

v
M(u, v) = 1. The underlying graph is G = ([n], E) where (u, v) ∈ E if and only if M(u, v) > 0

Definition 5.2. A distribution π ∈ Rn is stationary for Markov chain M if Mπ = π.

Definition 5.3. A Markov chain M is time reversible with respect to π stationary if for every pair of u, v ∈ [n]
it holds that π(u)M(v, u) = π(v)M(u, v). Notably, symmetric markov chains (i.e. d-regular undirected
graphs) are time reversible. Random walks on directed graphs are therefore not typically reversible.

Central to this proof is the rate at which Markov chains converge to a stationary distribution.
For a time-reversible Markov chain, this is characterized by the second largest eigenvalue, which is
why it was of interest in our study of undirected graphs. In the directed case, we need to make a
generalization of the second largest eigenvalue for situations in which all our eigenvalues may not be
real.

Definition 5.4.

⟨x, y⟩π = ∑
v∈supp(π)

x(v) · y(v)
π(v)

Norms w.r.t. this inner product are as expected. That is, π becomes a unit vector.

With this modified inner product, we can define our generalization of spectral expansion in the
directed case:

Definition 5.5.

λπ(M) = max
x∈Rn |⟨x,π⟩π=0

∥Mx∥π

∥x∥π

This definition of spectral expansion captures the same key idea as the second largest eigenvalue
in the undirected case: namely, when λπ is small, the Markov chain converges quickly to π. There-
fore, both in the USTCON algorithm previously presented as well as this one, we’re really interested
in the long-term behavior of random walks.

It turns out that most of the USTCON algorithm may be translated to this new setting. However,
since the previous analysis on the zig-zag product and spectral expansion relied on adjacency matri-
ces being symmetric, they do not extend and it is necessary to bound the spectral gap of the zig-zag
product of two regular digraphs (here, we define regular to be such that every vertex has the same
the same in-degree, and every vertex has the same out-degree). For a regular digraph, the uniform
distribution is always stationary - we are therefore generally interested in spectral expansion w.r.t. π
being the uniform distribution and omit it from our notation.
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First, we note that powering also improves expansion in directed graphs. Equivalently, you can think
of this as reducing mixing time (rate of convergence to uniform distribution).

Lemma 5.6. For any stationary distribution π of G, λπ(Gt) ≤ λpi(G)t. Proof omitted.

Unfortunately, the directed version suffers from the same problem as in the undirected case:
namely, that degree increases. Fortunately, the zigzag product on directed graphs is also a degree
reducing operation, producing a product graph with degree the square of the expander. Therefore, it
remains to show that the zigzag product does not decrease the spectral gap too badly.

First, we note that regular digraphs have a similar bound on their second-largest eigenvalue:

Lemma 5.7. Let G be a connected, D-regular digraph on N vertices in which every vertex has at least αD
self-loops (aperiodic). Then, λ(G) ≤ 1−Ω

( α

DN2

)
. This lemma may be thought of as the directed analogy to

Lemma 3.16. Proof omitted.

Using this lemma, we can prove the bounds we’d like on the zig-zag product in the directed
setting. That is,

Theorem 5.8. If λ(G1) ≤ 1− γ1 and λ(G2) ≤ 1− γ2 then λ(G1 z⃝G2) ≤ 1− γ1 ∗ γ2
2. Proof omitted.

Having characterized spectral expansion in a generalization for directed graphs and proven rel-
evant bounds on powering and the zigzag product, we can give present an identical algorithm.
Namely,

1. Transform our regular graph into a new graph such that each connected component is an ex-
pander. As before, we can define this transformation recursively as Gi = (Gi−1 z⃝H)40

2. Then, in our log diameter graph, we can give the same implicit DFS as previously argued.

While this algorithm only applies to regular digraphs, a fairly strong restriction, it has some interest-
ing consequences regarding arbitrary graphs.

Definition 5.9. A graph and associated edge labelling are considered consistently labelled if all vertices have
equal in-degree and out-degree, and our labelling is such that ROT(u, i) = (v, i). That is, the labellings of any
edge are the same from the perspective of either endpoint.

As it turns out, every regular digraph can be consistently labelled. We can create a pseudorandom
walk generator on consistently labelled graphs. In our pathfinding algorithm, we created a graph GL.
Due to its expansion properties, it holds that a short random walk will converge to the uniform distri-
bution. That is if we start at some vertex and follow the pseudorandom walk, we’ll end at an almost
uniformly distributed vertex. Since we assumed that the labels of an edge (u, v) was identical both as
an outgoing edge from u and an incoming edge of v, it holds that actually the edge labels associated
with the walk are independent of G and the starting vertex. Therefore, the edge labels taken can be
computed without GL itself, and therefore require only a small amount of space.

An important consequence is that if we could generalize this pseudorandom walk generator to all
regular graphs (even ones without consistent labelling), that would imply RL = L. This is due to
the fact that the so called poly-mixing s-t connectivity problem is RL complete. This question asks

whether the random walk on input graph G has a stationary distribution π such that λπ(G) ≤ 1− 1
k

and π(s), π(t) ≥ 1
k

where k is another input parameter.
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6 Appendix

6.1 Proof of USTCON ∈ RL

Perhaps the first major breakthrough regarding understanding USTCON was made in 1979 [8] which
showed that it is solvable in randomized logspace with onesided error (RL). In particular, they were
able to show that a random walk from an arbitrary vertex of a connected component will visit the
other vertices in a polynomial number of steps. The consequence of this idea was that the algorithm
which simply takes a random walk (storing current vertex and a counter) executes with only logspace
use. We give an overview of the proof for this below:

Consider G an undirected graph with n vertices and e edges. Then, we can characterize a random
walk on G as a Markov chain where states are probabilities and the transition probabilities give neigh-

boring vertices equal probability Pi,j =
1

d(i)
for all j such that (i, j) an edge). We also define T(i, j) to

represent the expected number of transitions until j is reached, starting at i.

Lemma 6.1. T(i, i) =
2e

d(i)
. Let π(i) be the stationary distribution of i. Then, π(i) =

d(i)
2e

. Mean recurrence

time is the reciprocal of the stationary probability, giving the desired result.

Corollary 6.2. A consequence of Lemma 6.1 is that for any (i, j) edge, the frequency with which this edge is

traversed
1
2e

.

Lemma 6.3. For adjacent vertices (i, j) it holds that T(i, j) + T(j, i) ≤ 2e, with equality iff the removal of
(i, j) edge increases the number of connected components (i.e. is a bridge). Since all transitions have the same
long-run frequency, the sum can be thought of as expected number of transitions in a round trip. In addition,
the expected number of iterations between i and j is only 1 for a bridge. The result follows.

Lemma 6.3 can be extended inductively for arbitrary i, j not necessarily adjacent. Then, if we
overload notation and define T(i) to be the expected time to visit all vertices starting at i, we have
that

Theorem 6.4. The expected time to visit all vertices of a connected component beginning at some vertex i is
polynomial in the number of nodes and edges. In particular, T(i) ≤ 2e(n− 1).

Proof. Fix a spanning tree H. DFS traversal of H starting at i gives a traversal which uses each edge
exactly twice ending at i. Denote this order of traversal i0, . . . , i2n−1. This gives a lower bound on the
expected time to visit all vertices.

T(i0, i1) + T(i1, i2) + · · ·+ T(i2n−3, i2n−2) = ∑ T(i, j) + T(j, i)

≤ 2e(n− 1)

The result we’d like follows from Markov: if we run an algorithm which takes a random walk of
length 4e(n− 1), then

Pr[X ≥ 2 ∗ 2e(n− 1)] ≤ 2e(n− 1)
4e(n− 1)

=
1
2

for X a random variable denoting the number of steps until every vertex has been traversed. Since
we clearly have no false positives, this places USTCON ∈ RL.
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6.2 Explicit Construction of Expanders

Throughout this proof of USTCON, we assumed the existence of some constant degree expander H.

In particular, we assumed the existence of an expander with parameters
(

D16, D,
1
2

)
. We show an

explicit construction [6] of a graph of such parameters.

This construction is based on the affine plane. We begin with a graph on D2 nodes, then use the
zigzag product to obtain a graph over more nodes. For q some prime power, we let Fq be the finite
field of order q. Let APq be a graph with vertex set F2

q and edges {((a, b), (c, d)) | ac = b + b}. Equiv-
alently, for each point (a, b), we have the (a, b) is connected to all the points on the line La,b = {(x, y) |
y = ax− b}.

Lemma 6.5. APq is an
(

q2, q,
1
√

q

)
graph. Moreover, the rotation map can also be computed in poly(logq)

time given a field representation. Since we just need a constant sized expander, for the purposes of the USTCON
proof, it is not necessary to know the time complexity associated with creating such a graph and we focus our
attention on showing a this graph has the desired properties.

Proof. (Adapted from [6]) Let M be the q2 × q2 adjacency matrix of APq. For row (a, b) and column
(a′, b′), we note that the entry of M2 is the number of common neighbors of (a, b) and (a′, b′) in APq

normalized by q2. For a ̸= a′, b ̸= b′, we know that La,b, La′ ,b′ intersect at a unique point (axiom of
affine space). If exactly one coordinate is the same, the intersection is empty. Finally, for a′ = a, b′ = b
we have an intersection of size q. That is

M2 =
1
q2


qIq Jq . . . Jq
Jq qIq Jq
...

. . . Jq
Jq Jq . . . qIq

 =
Iq ⊗ qIq + (Jq − Iq)⊗ Jq

q2

where Iq is the identity, and Jq is an all-ones matrix. We can calculate the eigenvalues of M2. In
particular, we note that Jq has eigenvalues q (multiplicity 1) and 0 (multiplicity q − 1). Therefore,
(Jq − Iq ⊗ Jq has eigenvalues (q − 1)q,−q, 0. Adding to Iq ⊗ qIq increases all eigenvalues by q, and
then finally, we normalized them each by q2, resulting in eigenvalues of 1 (multiplicity 1) and 0 (mul-

tiplicity q− 1) and
1
√

q
(multiplicity (q− 1)q). This shows the spectral expansion is indeed

1
√

q
.

Corollary 6.6. We can inductively define

AP1
q = APq ⊗ AP2

APi+1
q = AP1

q z⃝APq

From the same bounds on the zigzag product previously proved about the zigzag product and bounds on the

tensor product (out of scope of this survey, we have that APi
q is

(
q2(i+1, q2, O

(
i
√

q

))
. We omit the proof

of this. Then, for i = 7, we have a
(

q16, q2, O
(

7
√

q

))
. So selection of some q such that O

(
7
√

q

)
≤ 1

2
is

sufficient for our needs.
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