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1 Introduction

In classical economics, agents are modeled as rational, Bayesian agents who take actions to maximize

their expected utility. This assumption has faced substantial criticism over the years, leading to

the emergence of alternative models of “bounded rationality,” where the decision maker deviates

from full rationality in some way. One prominent approach is to apply computational complexity

constraints from theoretical computer science to human decision makers – if no computer on earth

can solve the problem until the end of time, maybe it is reasonable to assume that no human can

do so as well. Of course, it can be a very loose limitation on humans’ computational ability, since

most humans still struggle with polynomial time problems like adding two four-digits numbers. For

this very reason, it becomes even more fascinating when computational complexity accounts for

certain human behaviors observed in real life.

This survey aims to provide a detailed overview of various strands of literature that relate

computational complexity to economics. Specifically, we will demonstrate the hardness results

of computing Nash equilibria and reaching market efficiency. We will review prior research that

employs complexity constraints to explain deviations from classical models of Bayesian updating

and utility maximization. Finally, we will delve into the paper by Camara (2022), as it is a

noteworthy example of how complexity theory can be effectively applied to economics, yielding

sharp results.

2 Overview of the Literature

2.1 Hardness of Computing a Solution Concept in Economics

The first strand of literature that relates computational complexity to economics shows that many

analytic solution concepts used in economics are in fact computationally hard, so we may not expect

that computationally constrained agents can reach them efficiently in practice.

∗All authors contributed equally and are listed in alphabetical order.
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2.1.1 Hardness of Nash Equilibrium

For example, a series of works (Daskalakis & Papadimitriou 2005, Goldberg & Papadimitriou

2006, Chen et al. 2006, Chen & Deng 2006, Daskalakis et al. 2009) culminate in a famous result:

computing mixed Nash Equilibria for general non-zero-sum games is PPAD-complete. The concept

of NP-hardness does not directly apply to Nash Equilibria, because NP-complete problems, like SAT,

derive their complexity from the possibility that a solution may not exist. In contrast, John Nash

demonstrates that all games have at least one mixed Nash Equilibrium (i.e. a Nash equilibrium

where the choices are probabilitiy distributions over a finite set of “atomic” choices), guaranteeing

the existence of a solution (Nash 1951). Daskalakis et al. (2009) prove that, instead, Nash is

PPAD-complete. The class PPAD contains several challenging problems like End-Of-The-Line

and Brouwer, where a solution is guaranteed to exist but is difficult to find. This result suggests,

from a computational perspective, that mixed Nash equilibrium may be unnatural as a prediction

of the behavior by a group of agents in general games.

2.1.2 Hardness of Efficient Markets

Another paper along a similar vein is Maymin (2011). Maymin shows a close tie between the

Efficient Market Hypothesis (ETH) in finance and the P ̸= NP conjecture in computer science. He

argues that markets are efficient, implying that current prices reflect all available information in

past prices, if and only if P = NP.

The general idea is that we want to show that given a history of past prices, finding a strategy

that is consistently profitable (more profitable than random guessing) is hard. This implies that

profitable strategies exploiting market anomalies (patterns in past prices) cannot be efficiently

found by everyone and thus eliminated through competitive behavior. Therefore, markets are not

efficient since there exist positive returns to those who happen to find a pattern, at least until those

patterns become widely known.

We will go into the details of the proof as it is both innovative and instructive. Define a strategy

S as a function that takes in a length-t sequence of price movements UPs and DOWNs (encoded

as 1’s and 0’s) and outputs a position, either +1 for long, −1 for short, or 0 for neutral.

S : {0, 1}t → {−1, 0,+1}

In the proof, it is without loss to consider only the strategies that never output −1. Note that for

a particular strategy, the lookback window t is fixed, meaning the strategy can only depend on the

most recent t price histories. This ensures the generalizability of the strategies.

Now, the question is: for a given lookback window t and a critical value of profit K (that

distinguishes the profit from random chance) does there exist a strategy S that generates a profit

more than K, such that the sum of the prices of the purchased assets does not exceed a budget

constraint B?

This formulation of the problem happens to be an instance of the Knapsack problem as
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formulated in Garey & Johnson (1979): Given a finite set U and for each u ∈ U , given two

positive integers s(u) and v(u) which are referred to as the “size” and “value” of u, and given two

positive integers B and K, is there a subset U ′ ⊆ U such that
∑

u∈U ′ s(u) ≤ B and such that∑
u∈U ′ v(u) ≥ K?

If we think of u as length-t price histories, s(u) as the price for a given asset following a particular

price history, v(u) as the future return for a given asset following a particular price history, then

picking u to put in U ′ is equivalent to picking the set of length-t price histories which would result

in a “long” position (so that the complement of U −U ′ are price histories that result in a “neutral”

position). In that sense, picking u is the same as picking a strategy. We know that Knapsack is

NP-complete. Therefore, the question of whether or not there exists a budget-conscious strategy

that generates statistically significant profit is also NP-complete. In other words, investors would

be able to efficiently compute such strategies if and only if P = NP.

To strengthen the only if direction, the author also shows that we can “program” the market to

solve NP-complete problems, in particular, 3SAT. The general idea is to write a 3SAT formula as

orders that can be placed in the market. If a formula is satisfiable, then an efficient market should

be able to complete the order in polynomial time.

The translation is as follows. Each variable in 3SAT represents an asset. Bare variables imply

buy orders and negated variables imply sell orders. Notably, these orders need to be order-cancels-

orders (OCO), meaning that as soon as the market fulfills one part of the order, the other parts

are cancelled automatically.

For a given 3SAT formula, for example,

(a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ d),

we can translate the formula as two simultaneously placed orders:

1. Order-cancels-order buy A, buy B, or sell C

2. Order-cancels-order buy A, sell B, or buy D

If the 3SAT formula is satisfiable, i.e., there exists some way to execute all of those separate

OCO orders such that an overall profit is guaranteed, then the market, by its assumed efficiency,

ought to find a way to do so. If that is the case, then the market allows us to compute in polynomial

time the solution to an arbitrary 3SAT problem.

This paper connects perhaps the most famous problem in finance, whether the market is efficient,

to perhaps the most famous problem in computer science, whether P = NP. Comparing these two

problems reveals an interesting paradox, as the paper writes:

The majority of financial academics believe in market efficiency and the majority of

computer scientists believe that P ̸= NP. The result of this paper is that they cannot

both be right: either P = NP and the markets are efficient, or P ̸= NP and the markets

are not efficient.

3



2.2 Complexity as an Explanation for Deviations from Rationality

An alternative strand of the literature goes beyond theoretically identifying computationally hard

problems, but shows that computational constraints could explain some observed behaviors in real

life that deviate from the predictions of classical economic models.

2.2.1 Finding Regularities from Existing Knowledge

Aragones et al. (2005) observe the fact that individuals, with guidance, often realize new regularities

from their existing knowledge without acquiring additional facts. This contradicts the model of

Bayesian learning, in which agents learn only when new information is acquired. As the paper

wittily notes:

This phenomenon is so pervasive that it has been canonized in literature: Sherlock

Holmes regularly explains how the combination of a variety of clues leads inexorably to

a particular conclusion, following which Watson exclaims, “Of course!”

The authors argue that this phenomenon can be explained by the complexity of searching for

regularities. Formally, they relate the problem of finding regularities in one’s knowledge base as

an econometrician’s problem of determining whether there exists a small set of regressors that can

obtain a certain value of R2, a measure of how well the chosen regressors explains the outcome

variable in linear regressions.

They prove that, given explanatory variables (X1, . . . , Xm) and an outcome variable Y , for any

r ∈ (0, 1] and any integer k ≥ 1, determining whether there exists a subset of explanatory variables

that has size ≤ k and achieves an R2 ≥ r is NP-complete.

This means that for practical purposes, it is infeasible to determine the optimal set of regressors

for moderate to large datasets. Translating that to practice, it may explain why people may often

find that they have overlooked a simple linear regularity that, once pointed out, seems evident.

2.2.2 Cooperation in Finitely Repeated Prisoner’s Dilemma

Consider the game of finitely repeated prisoners’ dilemma, where a classical prisoner’s dilemma is

played finitely many times (say N) between the same two players. In such a game, a strategy of

the player is a function which maps a history of play to a subsequent action.

The classical game theory proves that the only rationalizable strategy is to defect in every

turn, which can be shown by backward induction. Consider the last stage game (t = N). At this

stage, the players’ action has no implication for future payoffs since the game ends after this turn.

Therefore, both players would play the dominant strategy in the stage game, i.e., defect. Knowing

this, however, the players should also play defect in the second-to-last stage game, since they would

play defect in the last stage no matter what. Repeating this argument shows that rational players

should play defect in every turn.
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However, experimental observations often show that players do cooperate, often over long peri-

ods of time, as oppose to always choosing the single-period dominant action. Neyman (1985, 1998)

aims to reconcile this discrepancy from the lens of complexity constraints.

Neyman uses finite automata as the computation model. An automaton is defined as having

a finite number of states, an initial state, an action function that prescribes the action taken in

each state, and a transition function that determines the next state based on the current state and

the actions of other players. The size of the automaton is the number of states. In particular,

Neyman measures the complexity of a strategy by the size of the smallest automaton capable of

implementing it. The paper argues that if players are restricted to using finite automata whose

size is polynomial in the total number of stages N , there exists an equilibrium that yields a payoff

close to the cooperative payoff.

This paper is among the first to provide a mathematically rigorous definition of complexity in

the context of games. This formulation proved fruitful, in the sense that restricting the complexity

of strategies that players can use justifies the observed cooperative behavior in such games. It is

probably a stretch to claim that finite automata are accurate descriptions of the cognitive process

of humans. Nonetheless, it highlights the importance of complexity considerations in predicting

human behaviors.

2.2.3 The Complexity of Decision-making

Modelling decision-making is a cornerstone of economics. One of the most well-known models of

decision-making is the one of utility maximization. It posits that the choices of an agent are rational

if and only if they maximize some real-valued function (Debreu et al. 1954). If the choices are over

probabilistic outcomes, the expected utility axioms require that the choices maximize the expected

utility of some function (Von Neumann & Morgenstern 1944).

When considering the utility-maximization problem, economists generally disregard the com-

plexity of making such decisions. There has been a series of efforts to bring this consideration into

economic modeling. For example, finite automata have been used to study games (Aumann 1981,

Rubinstein 1986, Neyman 1985, 1998), procedural choice (Salant 2011), and Bayesian reasoning

(Wilson 2014). Other researchers have used Turing machines to study the computability of choices

(Richter & Wong 1999). However, computability is much weaker than computational tractability,

since it only requires that a behavior can be generated by a Turing machine, without regard to

time constraints.

Camara (2022) is the first to study the tractability of choices under uncertainty using a Tur-

ing machine. It stands out from previous literature in a few aspects. It requires computational

tractability rather than computability of choices, which connects closer to most of complexity the-

ory developed in computer science. It considers choices under uncertainty, which is more involved

than the classic model of budget-constrained consumer choice. Finally, it uses Turing machines,

the most general computational model, to describe choice behavior. Besides methodological in-

novations, it is able to obtain strong characterization results that make sharp predictions about
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economic behavior. It explains behavioral heuristics, such as choice bracketing, as responses to

computational constraints. It also brings into question the applicability of classical rationality ax-

ioms in the presence of such constraints. For these reasons, we believe it is valuable to dive deep

into this paper in particular, as it serves as an epitome of marrying complexity theory and economic

modeling, and so the rest of this report is an overview of the main results from this paper.

3 Computationally Tractable Choice: Introduction and Prelimi-

naries

3.1 Introduction

The first three theorems of Camara (2022) show that forms of choice under certain definitions of

“tractability” are equivalent to forms of a behavioral heuristic called “choice bracketing,” under the

assumption that certain widely believed computation complexity conjectures are true. At a loose

level, an agent exhibits “choice bracketing” if they make choices over a set of items in a manner in

which they do not consider all possible choices of each item. As an informal example, consider a

worker choosing Xi ∈ {Low,High} effort on days i ∈ [n], and suppose wages can vary on a daily

basis. Putting in high effort is more costly to the worker. One way to make a choice here is to

always guarantee the optimal sequence of efforts by considering all 2n choices and trade off the

total wages with the life-time disutility of working. Another way the worker might make a choice

is by considering each day independently and trading off wage and effort on those days, and then

using the effort levels they found for each day to determine their final sequence of efforts. This

only requires considering n choices, and so is clearly much easier in practice, although this cannot

guarantee an optimal effort choice since the worker disregards intertemporal substitution of wages.

The last theorem of Camara (2022) demonstrates that this intuition is correct, and in practice we

cannot have a way of making tractable choices that guarantee optimal payoffs in all cases.

3.2 Preliminaries

To be general, we will define the sequences of items that agents choose to be lotteries, i.e., probability

distributions, over a set of outcomes called X . We view x ∈ X as an “effectively n-dimensional”

vector, i.e.,

∃n such that x = (x1, . . . , xn, 0, . . . ) ∈ Q∞.

A lottery X : [0, 1] → X is viewed as a probability distribution over outcomes where X gives us an

outcome based on a uniform random variable ω ∈ [0, 1]. If we take the highest index of a non-zero

component to be n, then we can view X as an n-tuple of partial lotteries Xi, i.e.,

X = (X1, . . . , Xn).
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These partial lotteries are simply probability distributions over Q. A menu M is a set of lotteries

that an agent can choose from, and a partial menu is a set of partial lotteries. We define partial

lotteries so that we can have the notion of product menus, which are just the product set of

partial menus. We will call the set of all menus that the agent might be presented with as M. For

this paper, we assume that M includes all product menus over binary partial menus and that it

also includes all binary menus, i.e., menus consisting of two lotteries.

We will model the concept of choice with a correspondence c which maps a menu M ∈ M to a

lottery X ∈ M . We will say that a choice correspondence c is rational if it can be generated by

preferences that satisfy the expected utility axioms (Von Neumann & Morgenstern 1944), which are

a set of axioms that capture the idea of “rational” preferences and are used throughout economics

to define rationality. Von Neumann & Morgenstern (1944) prove that a choice correspondence c

satisfies those axioms if and only if there exists a utility function u : X → R such that

c(M) = argmax
X∈M

E[u(X)], ∀M ∈ M,

which is the definition we will use throughout this paper. Now, we will define tractable choices in

the following way:

Definition 1. Choice correspondence c is tractable if there exists a Turing machine that

• takes in the description of menu M and outputs choice c(M)

• and halts in poly(n) steps for all M ∈ M.

We will also need a notion of symmetry for utility functions and choice correspondences.

Definition 2. A utility function u is symmetric if for any permutation σ : [n] → [n],

u(x1, . . . , xn) = u(xσ(1), . . . , xσ(n))

for all (x1, . . . , xn) ∈ X .

Definition 3. A choice correspondence c is symmetric if c(M) = c(M ′) for any menus M,M ′

where M ′ is a permutation menu of M . We define a permutation menu M ′ of M to be a menu

with all the same lotteries except each lottery has its first n partial lotteries permuted by the same

permutation σ : [n] → [n].

Lastly, we define a notion that is essentially equivalent to a certain type of choice bracketing.

Definition 4. A utility function u is additively separable if there exist functions u1, . . . , un such

that

u(x1, . . . , xn) = u1(x1) + · · ·+ un(xn).

for all (x1, . . . , xn) ∈ X .

7



The form of choice bracketing this is equivalent to is called narrow choice bracketing, which

means that for all i ∈ [n], the i-th component of an agent’s choice only depends on the i-th partial

menu. The intuition for this is that if making partial choices is done one partial menu at a time,

then this can be modeled with an additively separable utility function in which a maximizer can

choose an outcome by choosing the maximal outcome for each component independently.

Lastly, we require the concept of efficient computability, but it is not important so we will

omit a formal definition. Informally, a utility function is efficiently computable if there exists a

polynomial-time machine that computes the function with at most ϵ imprecision. This is essentially

a regularity condition – it is much weaker than tractability of the choice correspondence, and

unrelated to separability. Intuitively, being able to calculate utility for a given outcome is very

different from being able to choose the best lottery amongst a large set of lotteries.

4 Theorem 1

Theorem 1. Let choice correspondence c be rational, tractable, and symmetric. If P ̸= NP then c

reveals an additively separable, symmetric, and efficiently computable utility function.

We will outline the proof of this theorem. Camara reduces the proof to the following four

lemmas:

Lemma 1. Let u be a symmetric utility function. Then u is additively separable iff there do not

exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) ̸= u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

Lemma 2. Suppose a tractable choice correspondance c maximizes expected utility, where there

exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) > u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

Then there exists a polynomial-time algorithm for MAX 2−SAT.
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Lemma 3. Suppose a tractable choice correspondence c maximizes expected utility, where there

exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) < (a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

Then there exists a polynomial-time algorithm for MIN 2−SAT.

Lemma 4. A choice correspondence that is rational and strongly tractable reveals an efficiently

computable utility function.

Theorem 1 follows directly from these Lemmas. Suppose we have some choice correspondence

c which is rational, tractable, symmetric. Since c is rational, by definition, c maximizes expected

utility for some utility function u. Since c is symmetric, u must also be symmetric. Now, assuming

P ̸= NP, since SAT has polynomial time reductions to MAX 2−SAT and MIN 2−SAT , there can’t

be polynomial time algorithms for MAX 2−SAT or MIN 2−SAT . Using all these facts, Lemmas

2 and 3 imply that there do not exist constants a, b ∈ Q and an outcome x ∈ X such that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) ̸= u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

Thus, Lemma 1 implies that u is additively separable. Finally, since u is strongly tractable, Lemma

4 impies that u is efficiently computable.

4.1 Proof Overview of Lemma 2

Now we will prove Lemma 2. The idea is to construct an algorithm for MAX 2−SAT by translating

a 2-CNF formula to a product menu over binary partial menus, choosing a lottery that maximizes

expected utility, and translating this into an assignment that satisfies the maximum number of

clauses in the formula. Since we assume c to be tractable, this algorithm runs in polynomial time.

The menu that the algorithm constructs is just the product over all binary partial menus

Mi = (XT
i , X

F
i ), where XT

i and XF
i correspond to assignments of true and false to variable vi,

respectively, and so the menu has a one to one mapping to the set of assignments to the variables

of the formula. Based on this idea, define g so that if Xi = XT
i , then it assigns variable vi = True,

and if Xi = XF
i , then it assigns variable vi = False. To demonstrate the proof, we will show a

simpler case and then explain how it generalizes to the general case.
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4.1.1 Proof of the Special Case

For the special case, suppose that the corresponding utility function is

u(x1, . . . , xn) = max{x1, . . . , xn}.

In this case, we won’t have to use the fact that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) ̸= u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)

for some a, b ∈ Q and x ∈ X . Suppose we have some boolean CNF formula over n variables,

v1, . . . , vn, where there are m clauses of two literals each, and we will denote the jth clause by

vj1 ∨ vj2 . Define XT
i and XF

i so that if ω ∈ [(j − 1)/m, j/m), then

XT
i (ω) :=


1 vj1 = vi

1 vj2 = vi

0 otherwise

XF
i (ω) :=


1 vj1 = ¬vi
1 vj2 = ¬vi
0 otherwise

,

In words, based on a randomly picked subinterval of [0, 1], if the clause corresponding to this

subinterval is true when vi = True, then XT
i = 1, and if it is true when vi = False, then XF

i =

1, and otherwise both lotteries are 0. Now, given any choice of lottery X = (X1, . . . , Xn) ∈∏n
i=1{XT

i , X
F
i }, one can see that

E[u(X1, . . . , Xn)] = E[max{X1, . . . , Xn}]

=
1

m

m∑
i=1

E[max{X1, . . . , Xn} | ω ∈ [(j − 1)/m, j/m)]

=
1

m

m∑
i=1

E[1(vj1 ∨ vj2 | g(X1 . . . , Xn)) | ω ∈ [(j − 1)/m, j/m)]

=
1

m

m∑
i=1

1(vj1 ∨ vj2 | g(X1 . . . , Xn))

Therefore, maximizing expected utility is equivalent to maximizing the number of clauses satisfied.

The equality from the second to the third line is because of the following: Given some choice of

lotteries (X1, . . . , Xn) ∈
∏n

i=1{XT
i , X

F
i } and that ω ∈ [(j − 1)/m, j/m),

max{X1, . . . , Xn} = 1

⇐⇒
Xi(ω) = 1 for some i ∈ [n]

⇐⇒
for some i ∈ [n], ((vj1 = vi or vj2 = vi) and Xi = XT

i )
∨

((vj1 = ¬vi or vj2 = ¬vi) and Xi = XF
i )
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⇐⇒
vj1 = True or vj2 = True given the assignment g(X1, . . . , Xn)

⇐⇒
1(vj1 ∨ vj2 | g(X1 . . . , Xn)) = 1

4.1.2 Extension to the General Case

The reason that this argument cannot apply to the general case is that the step where we claim

that

E[u(X1, . . . , Xn) | ω ∈ [(j − 1)/m, j/m)]] = E[1(vj1 ∨ vj2 | g(X1 . . . , Xn)) | ω ∈ [(j − 1)/m, j/m)]]

is true when utility is the max function but not true in general. We only need these two values

to be proportional, not necessarily equal, so we just need that in general, there exists some c only

dependent on the utility function u such that

E[u(X1, . . . , Xn) | ω ∈ [(j − 1)/m, j/m)]] = cE[1(vj1 ∨ vj2 | g(X1 . . . , Xn)) | ω ∈ [(j − 1)/m, j/m)]].

(1)

But even in a simple case where u(X1, . . . , Xn) = (X1 + · · · +Xn)
2, this fails. If, for some j, the

j-th clause is v1 ∨ v2, then if ω ∈ [(j − 1)/m, j/m) and we choose X1 = XT
1 and and X2 = XT

2 ,

then

E[u(X1, . . . , Xn) | ω ∈ [(j − 1)/m, j/m)]] = (1 + 1)2 = 4,

whereas if we chose X1 = XT
1 and X2 = XF

2 , then

E[u(X1, . . . , Xn) | ω ∈ [(j − 1)/m, j/m)]] = (1 + 0)2 = 1.

This is bad because

E[1(vj1 ∨ vj2 | g(X1 . . . , Xn)) | ω ∈ [(j − 1)/m, j/m)]] = 1

in both of these cases.

The way Camara (2022) generalizes this argument is to do two things:

1. Subdivide the interval [0, 1] into more subintervals.

2. Add more cases to each XT
i and XF

i so that in all cases, we get that equation 1 holds for

some c.

He defines the lotteries in terms of a parameter α, and he uses the fact that

u(a, a, x3, x4, . . .) + u(b, b, x3, x4, . . .) ̸= u(a, b, x3, x4, . . .) + u(b, a, x3, x4, . . .)
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for some a, b ∈ Q and x ∈ X to prove that there exists a certain choice of α that makes equation

1 hold for some c. Since the casework is long and arduous, we will refer the reader to the original

paper for details.

Theorem 1 shows that, while assuming symmetry, rational and tractable choices reveal an

additively separable utility function, which means that the decision maker must exhibit narrow

choice bracketing. This is a little unsatisfactory in the sense that symmetric choice correspondences

may be palatable in some contexts (e.g. when different dimensions represent income earned from

different assets) but unnatural in others (e.g. when different dimensions represent different goods).

Theorem 2 and 3 will generalize the results in Theorem 1 by dropping the assumption of symmetry.

The resulting utility functions will be Hadwiger separable, a concept we will introduce in the next

section.

5 Hadwiger Separability

Hadwiger separability is a relaxation of additive separability. It captures a sense in which most

pairs (xi, xj) are evaluated separately and independently from each other, but not necessarily all.

Definition (Pairwise separability). A utility function u is (i, j, n)-separable if there exist functions

ui, uj such that for all n-dimensional outcomes x,

u(x) = ui(xi, x−ij) + uj(xj , x−ij)

where x−ij denotes the all the other coordinates except for xi, xj.

Example: A decisionmaker is choice bracketing. She partitions dimensions n into mutually exclu-

sive brackets Bj . For each bracket Bj , she maximizes expected utility according to a utility function

uj which is defined over the coordinates i ∈ Bj . Then, the utility function u is (i, j, n)-separable iff

i, j are not in the same bracket. More concretely, if a possible consumer’s revealed utility function

for n = 5 is

u(x) = u1(x1, x2) + u2(x3, x4, x5)

then u is (1, 3, n = 5)-separable, but not (1, 2, n = 5)-separable. Intuitively, each bracket represents

natural complements (e.g. cereal and milk) or substitutes (e.g. apples and oranges), and the

consumer ignores any complementarity or substitutability across the brackets.

Definition (Inseparability Graph). For all n-dimensional outcomes x, the inseparability graph

Gn(u) of a utility function u is an undirected graph with n vertices.

We connect the (in)separability of a utility function to the sparsity of the inseparability graph.

Notice that there is an edge between nodes i and j if and only if the pair (xi, xj) is not separable. If

the inseparability graph Gn(u) is sparse, then almost all pairs (xi, xj) are separable and the utility

function u is “almost” separable. The measure of graph sparsity was formulated by Hadwiger

(1943) to state his longstanding conjecture about the chromatic number of graphs.
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Definition (Minor Graph). G′ is a minor if it can be formed from G by some sequence of the

following two operations:

1. Delete a vertex v and all of its incident edges.

2. Contract an edge (i, j) This deletes nodes i, j and replaces them with a new vertex k.

Definition (Hadwiger Number). The Hadwiger number Had(G) of an undirected graph G is the

number of nodes in its largest complete minor.

In the above example, the Hadwiger number Had(G) = 4, because G′ is the largest complete minor

of G and G′ has 4 vertices.

Definition (Hadwiger Separability). The function u is Hadwiger separable if

Had(Gn(u)) = O(log n)

Compared to additive separability, it is capable of modeling a richer set of preferences (e.g.

limited number of complementarities and substitutions). Eppstein (2009) showed that computing

the Hadwiger number of any arbitrary graph is NP-hard. However, based on the result of Alon

(2007), for any inseparability graph Gn(u) and constant C, it is possible to determine whether

Had(Gn(u)) ≤ C log n in O(poly(n,C)) time.

Proposition 1. A symmetric utility function is Hadwiger separable iff it is additively separable.

Proof. When the function u is symmetric, the inseparability graph Gn(u) is either empty or com-

plete. If Gn(u) is empty, then u is additively separable. If Gn(u) is complete, then Had(Gn(u)) = n

and therefore u is not Hadwiger separable. It follows that Hadwiger separability is equivalent to

additive separability when u is symmetric.
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6 Representation Theorem

Assumption 1 (Non-uniform Exponential Time Hypothesis (NU-ETH)). There is no family of

algorithms (one for each length of the input, in the spirit of advice) that can solve 3-SAT in time

2O(n).

Theorem 2. Assume NU-ETH holds. If choice correspondence c is rational and weakly tractable.

then c reveals a Hadwiger separable utility function, which is efficiently computable with advice.

This is stronger than Theorem 1, and in fact it implies Theorem 1 as a corollary. Suppose that

the choice correspondence c is symmetric, as well as rational and weakly tractable. By Theorem

2, c is Hadwiger separable. Since c is also symmetric, Proposition 1 implies that c is additively

separable. Theorem 3 is a partial converse of Theorem 2.

Theorem 3. Assume NU-ETH holds. Let the utility function u be Hadwiger separable and effi-

ciently computable with advice. Then expected utility maximization is weakly tractable on a smaller

set of menus (i.e., product menus).

6.1 Proof Outline of Theorem 2

Lemma 6.1. Suppose a weakly tractable choice correspondence c maximizes expected utility, where

dn := Had(Gn(u))

Then there exists an O(poly(n))-time algorithm to solve MAX 2-SAT for any boolean formula with

at most dn variables. The algorithm uses at most O(poly(n))-size advice.

The advice in Lemma 6.1 provides two kinds of information. First, it describes the largest

complete minor of the inseparability graph Gn(u). Second, it identifies the coordinates pair (xi, xj)

where the utility function u is not (i, j, n)-separable.

The proof of Lemma 6.1 has 2 main steps: In step 1, we construct an auxilliary formula BF’

with n variables using polynomial-size advice. This will be an instance of a weighted MAX 2-SAT

problem. A solution to this auxilliary problem is corresponding to a solution to the original problem.

In step 2, we will reduce the weighted MAX 2-SAT problem to expected utility maximization using

polynomial-size advice. This will be similar to the proof of lemmas for Theorem 1. It follows

that the solving MAX 2-SAT for the original formula is weakly tractable if the expected utility

maximization is weakly tractable. Here is a direct corollary of Lemma 6.1.

Corollary 1. Suppose a weakly tractable choice correspondence c maximizes expected utility, where

Had(Gn(u)) = ω(log n)

Then the there exists a O(2O(n))-time algorithm for 3-SAT with n variables with at most O(poly(n))-

size advice.
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Since we assume NU-ETH holds, Had(Gn(u)) = O(log n) if c is a weakly choice correspondence.

Then by definition, u is Hadwiger separable. This completes the proof of Theorem 2

6.2 Proof Outline of Theorem 3

We directly construct an algorithm that maximizes the expected utility in polynomial time with

advice (see algorithm 1 on the next page). The algorithm takes an input of a Hadwiger separable

utility function u. The advice for the algorithm includes the inseparability graph G = Gn(u) and

any advice needed to efficiently compute the utility function u. It is easy to verify that the advice

has poly(n) size.

The algorithm employs dynamic programming techniques on a graph. As more nodes/coordinates

are visited, the algorithm redefines the optimal choice X∗
i (·) so that it remains a function of unvis-

ited coordinates. Eventually, the algorithms visit all coordinates, and the functions X∗
i (·) have no

remaining arguments.

Assume there are k alternative partial lotteries Xi ∈ Mi. In step 9-10, the set MSi∪Ii has up to

k2|Ii| elements. Since u is Hadwiger separable, the number of indirect influencers of any node i is

|Ii| = O(log n). Therefore, step 9 − 10 take O(k2|Ii|+1 · poly(n)) = O(poly(n)) time. Since all the

other steps in the algorithm also takes O(poly(n)) time, algorithm 1 is a polynomial time algorithm

with advice of polynomial size.

7 Conclusion and Discussion

This survey demonstrates how computational complexity theory can inform our understanding of

economic decision-making. It explores the limitations of classical economic models in addressing the

complexity of tasks like computing Nash equilibria and achieving market efficiency. By integrating

computational constraints, this survey offers insights into why certain economic behaviors, tradi-

tionally viewed as irrational, are actually rational when considering human cognitive limitations.

How well does computational complexity as defined in computer science pertain to human

reasoning? Indeed, there are problems such as natural language understanding or face recognition

that toddlers perform better than do computers. But these are problems for which finding an

appropriate mathematical model is a major part of the solution. By contrast, for well-defined

combinatorial problems such as those in the class NP, it is rarely the case that humans perform

better than do computers. So long as many problems we face in economic domains are of this

nature, we believe that studying the implication of computational constraints still provide a useful

upper bound on human behavior.
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Algorithm 1: Dynamic choice bracketing algorithm that maximizes expected utility

• 1. Convert the undirected graph G into a directed acyclic graph G′ by assigning a direction to
each edge.

• 2. Define a frontier set F which contains unvisited nodes that are successors to some visited
node.

• 3. Set F = ∅ initially.

• 4. Let i be the smallest unvisited node in G′.

• 5. The successors Si are unvisited nodes j where G contains an edge between i and j.

• 6. The predecessors Pi are visited nodes j where the optimal choice X∗
j (·) depends on Xi.

• 7. The indirect influencers Ii are frontier nodes j ∈ F where G contains a path between i and j
that does not pass through F .

• 8. Let the value function equal expected utility under the assumption that Xj = 0 for all
coordinates j /∈ {i} ∪ Si ∪ Pi. More formally, define

Vi(Xi, XSi , XPi) = E[u(Xi, XSi , XPi , 0, 0, ...)]

• 9. Define the optimal choice X∗
i (·) as a function of successors and indirect influencers.

X∗
i (XSi , XIi) = arg max

Xi∈Mi

Vi(Xi, XSi , X
∗
Pi
(Xi, XIi))

• 10. Redefine the optimal choices X∗
j (·) for predecessors j ∈ Pi by replacing Xi with X∗

i (·).

X∗
j (XSi , XIi) = X∗

j (X
∗
i (XSi , XIi), XIi)

• 11. Add Si to frontier set F and remove i from F . Repeat step 4-11 until there is no unvisited
nodes in G′.

The algorithm outputs (X∗
1 , ..., X

∗
n).
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