
Survey of Differential Privacy

James Zhang
Department of Computer Science

Cornell University
rz234@cornell.edu

Owen Oertell
Department of Computer Science

Cornell University
ojo2@cornell.edu

Stephanie Ma
Department of Computer Science

Cornell University
ym363@cornell.edu

1 Introduction

As datasets become filled with more and more sensitive information, it becomes of greater importance
that this sensitive information does not get revealed. However, maintaining usefulness of the data to
allow researchers to draw conclusions about the data is a rival concern. We have therefore seen a
significant rise in attention towards differential privacy. In particular, a recent series of papers has
formalized the notion of differential privacy [8]. That is, a database privatization mechanism satisfies
differential privacy if the addition or removal of a single element of the database does not change the
probability of any outcome of the mechanism by more than some small amount, ϵ. The motivation
behind this definition is that although one will be able to determine general patterns from the data,
it’s impossible to determine specific values of an individual data point.

Indeed differential privacy is not merely the only notion of database privacy. One particular, stronger,
notion of privacy is distributional privacy. Distributional privacy posits that for a database drawn
from a distribution, then privacy-preserving mechanisms should reveal only information about the
underlying distribution and nothing else. That is, given a database D over data points, then there
is not a significant change in the probability of any outcome when coming from an entirely new
database D′. Such a notion of privacy is less common and we will stick with the prevailing notion of
differential privacy for the remainder of this report.

Up until the point of [3], modern differential privacy research had shown a series of lower bounds. In
particular, [4] showed that one must add perturbation of results to counting queries on the order of
magnitude of Ω(

√
n) for non-interactive databases. Likewise [7] showed that one must add noise

in accordance with a notion of sensitivity of the function. Both of these results hint that when one
allows O(n) queries to the database, adding noise is crucial to preserving a sense of differential
privacy. Further, [12] showed that if one-way functions exist, then there is no polytime algorithm
which takes in a database and O(n2) arbitrary efficiently computable counting queries, and returns
an approximate answer to each query while still satisfying differential privacy. Interestingly, these
results also hold for “simple" queries, or queries that are computable with AC0 circuits.

In light of these results, other work has focused on access mechanisms that permit merely a sub-linear
number of queries. However, due to the fact that the database must be destroyed afterward, its
usefulness is relatively limited. Thus, coming up with other ways to maintain usefulness even with a
linear number of queries is desirable.

One of the most common types of queries to a database, and those that will be focused on for the
remainder of this survey are halfspace queries. In particular, they have the form of “how many points
satisfy predicate φ?". Although this particular class of queries does not encompass everything that

Preprint. Under review.

can be asked of the database, focusing on these queries is able to circumvent some of the lower
bounds shown for subset sum queries [7].

One of the most natural things to do when it comes to achieving privacy is adding noise. There are
two main schools of thought when it comes to adding noise. In particular, we have input perturbation
techniques which focus on adding noise to the underlying data and then answering truthfully with
the access mechanism. Conversely, there is also output perturbation techniques where the true
answers are queried from the database but the ending response is perturbed by data [7]. Both of
these techniques have their own strengths and weaknesses. In fact, [1] showed that it was possible to
reconstruct the distribution of the original data and to build classifiers that behave nearly identically
to those built with the original data. In what follows we consider what would be most similar to an
output perturbation technique.

2 Organization

We discuss an introduction to differential privacy in the first section, cover the related works, and
further the current state of differential privacy in the third section. We discuss interval queries and the
lower bounds in the fourth and fifth sections. Then cover how to answer halfspace queries. Finally,
we discuss future work and open problems.

3 Related Works and the State of Differential Privacy

In the paper [6], Cynthia Dwork provided a brief introduction to the idea of differential privacy
and then proceeded to give a survey of results in this field from different papers. One of the main
mechanisms used to achieve differential privacy is the Laplace mechanism where the output of the
query is perturbed by Laplacian noise. We will formally introduce this mechanism in the next section.

The first algorithm she provided is a differentially private algorithm for statistical data inference [8].
Given a database where each row contains k boolean attributes, together with the incidence settings
of any ℓ attributes (that is, the proportion of rows satisfying all ℓ attributes), we want to query the
incidence settings of any 2ℓ attributes. The key to achieving this goal is through Bayes’s Rule and de
Morgan’s Rules. For example, if A and B are sets of attributes, then Pr[A ∧B] = Pr[A] · Pr[B|A].
Note that if the two probabilities Pr[A] and Pr[B|A] are not exact values but only approximates, then
multiplying the two probabilities increases the error additively.

To determine Pr[B|A] accurately, we first find a heavy set of A, which is a subset of the database
where A occurs more than average. We then find the proportion of B within this set. Intuitively, if
the proportion of B deviates significantly from the average in this heavy set of A, then A and B are
highly correlated. To obtain a heavy set of A, we sample a random subset from the database, and with
constant probability, the proportion of A will be one standard deviation above the average. Therefore,
the curator can release a perturbed version of incident rates of A and B to guarantee differential
privacy.

The second algorithm is for contingency table release [2]. In this problem, we again have a database
where each row contains k boolean attributes, but we are instead given the contingency table, which
counts the number of rows that satisfy a given subset of the k boolean attributes. Since each attribute
is either true or false, we have a k-dimensional table of 2k cells of numbers. The table is likely to
be sparse since it has exponentially many cells, so we typically release the marginal table, which
records the number of rows that satisfy some small subset of attributes.

The first approach is to add noise to each of the cells in the table using the Laplace mechanism.
However, since the errors are additive, the errors for low-dimensional marginals are exponentially
large compared to the errors that we add to each cell. The second approach is to directly perturb
the marginals using the Laplace mechanism. This does not lead to huge errors, but it can cause the
marginal values to be inconsistent. That is, users might get two different values by summing up
the marginals in two different ways. The last approach transforms the data into the Fourier domain,
perturbs the Fourier coefficients, and then transforms the data back to the contingency table domain.
In addition, the authors of the paper used linear programming to obtain a non-negative perturbed
dataset and then used rounding to turn each entry into an integer.

2

The third algorithm answers interval and halfspace queries [3], which we will discuss in detail for the
rest of this report.

4 Preliminaries

Before diving into the details of how we preserve differential privacy on some fixed types of queries
to the database, we first present crucial definitions for related differential privacy concepts.

There are generally two categories of mechanisms that preserve database privacy: interactive and
non-interactive database access mechanisms. We use A(·) to represent a database mechanism. An
interactive mechanism, as its name suggests, allows the curator who sits in between the users and the
database to answer privacy-preserving queries. In this process, the curator follows the mechanism to
“anonymize” sensitive data information and send privacy-preserving responses to users. The database
is never released to the public. Given a database D with a user’s query Q, the curator outputs the
response A(D,Q) following the interactive mechanism. On the other hand, in the non-interactive
setting, the curator processes the whole database at once and follows the mechanism to generate a
new privacy-preserving database with all sensitive information removed. The curator then can release
the new database to the public, and they can keep the original database secretly or destroy it as they
wish. Formally, given a database D, the curator outputs a sanitized database A(D) to the public.

Because the mechanisms are almost always probabilistic, we can formalize differential privacy using
the definitions below:

Definition 4.1 Given a database D, we say D′ is a neighbor of D if they only differ by a single data
point.

Definition 4.2 Given an interactive database access mechanism A, we say A satisfies α-differential
privacy if for all neighboring database D1 and D2, for all queries Q,

∀xPr[A(D1, Q) = x] ≤ eα Pr[A(D2, Q) = x].

Given a non-interactive database access mechanism A, we say A satisfies α-differential privacy if
for all neighboring database D1 and D2, for all sanitized database D̂,

Pr[A(D1) = D̂] ≤ eα Pr[A(D2) = D̂].

Intuitively speaking, a database preserves differential privacy if we cannot picture the original
database, i.e., based on the mechanism’s output it’s hard to determine if the response comes from
which of the two neighboring databases.

In addition to ensuring sensitive data is not compromised, in the non-interactive setting, we would
like the sanitized database to be ‘useful’. In other words, we want the publicized, sanitized database
to have similar responses as the original database.

Definition 4.3 We say a query Qφ is a predicate query for predicate φ if for any database D,

Qφ(D) =
|{x ∈ D : φ(x)}|

|D|
.

Definition 4.4 Given a non-interactive database mechanism A, we say A is (ε, δ)-useful for predicate
query class C if with probability 1− δ, for all predicate query Q ∈ C and for all database D,

|Q(A(D))−Q(D)| ≤ ε.

In the remainder of this paper, we mainly care about non-interactive database mechanisms that
generate a sanitized database specialized for a single class of predicate queries. Before we proceed,
however, we introduce a very straightforward interactive mechanism PRIVATEα that achieves α-
differential privacy.

Definition 4.5 Given any database and predicate query Q, we define PRIVATEα(D,Q) := Q(D) +
Z, where Z is a random variable drawn from the Laplace distribution, i.e., Z ∼ Lap(1/(nα)).

3

Theorem 4.6 PRIVATEα(D,Q) preserves α-differential privacy.[7]

Proof. For arbitrary adversary A, we have a query function ft(x) : D
n → Rd be a query function.

By the law of conditional probability

Pr[PRIVATEα(D,Q) = t]

Pr[PRIVATEα(D′, Q) = t]
=

∏
i

Pr[PRIVATEα(D,Q)i = ti|t1, . . . , ti−1]

Pr[PRIVATEα(D′, Q)i = ti|t1, . . . , ti−1]

For each term in the product, we fix the first i − 1 coordinates of t. This fixes the values of
PRIVATEα(D,Q)i and PRIVATEα(D

′, Q)i. We therefore know that the conditional distributions
are laplacians and so we can bound each term and their product as:

∏
i

Pr[PRIVATEα(D,Q)i = ti|t1, . . . , ti−1]

Pr[PRIVATEα(D′, Q)i = ti|t1, . . . , ti−1]
≤

∏
i

exp(|PRIVATEα(D,Q)i − PRIVATEα(D
′, Q)i|/λ)

= exp(∥PRIVATEα(D,Q)i − PRIVATEα(D
′, Q)i∥1/λ

Where we complete the proof using the bound that S(Q) ≤ λϵ, for all t. □

5 Interval Queries

In this section, we consider an efficient non-interactive mechanism that achieves α-differential privacy
and (ε, δ)-usefulness. This mechanism smartly uses the idea of binary search and builds the sanitized
databases by utilizing mechanism PRIVATEα. It’s also efficient, which means that it can be widely
applied to a lot of scenarios in daily use. However, this mechanism will only work for discretized
databases, as we will see soon; if it’s not discretized, then the mechanism is not guaranteed to be
efficient anymore.

We first define what interval queries are: interval query asks the number of data points that sit in that
interval. The following definition is only for one-dimensional databases, but we can easily extend
this (and also the following mechanism) to other finite-dimensional databases.

Definition 5.1 We say a query Q[a,b] is an interval query if for any database D,

Q[a,b](D) =
∑
x∈D

1[a ≤ x ≤ b]

|D|
.

Now it’s time to introduce the mechanism; without loss of generality, we assume all data points are
scattered among the interval [0, 1]:

Definition 5.2 Given a database D that contains n data points and is discretized to b bits, we use
PRIVATEα′ to query D and use binary searches to partition the entire interval [0, 1] into 2/ε1 sub-
intervals, such that the number of points each contains is in [n(ε1/2− ε2), n(ε1/2 + ε2)], i.e., each
sub-interval has a probability mass in [ε1/2− ε2, ε1/2 + ε2]. The sanitized database can then be
constructed by putting n(ε1/2) number of points into each sub-interval.

The exact positions of data points don’t matter as long as they are in the right sub-intervals.

Theorem 5.3 This mechanism can be done efficiently, and achieves α-differential privacy and (ε, δ)-
usefulness, if α′ = εα

4b , ε1 = ε/2, ε2 = ε2/8, and

n ≥ O(
b(log b+ log(1/εδ))

αε3
).

Proof. Because D is discretized to b bits, the binary search needs at most b depth to differentiate all
distinct data points. Since running binary search once decides a boundary of a sub-interval, we need
to perform O(b · 2

ε1
) = O(bε) number of PRIVATEα′ queries in total, so the mechanism can be done

in O(nbε).

4

Figure 1: The sanitized database cannot correctly answer for those intervals that only partially
intersect with the query interval.

Because PRIVATEα′ preserves α′-differential privacy and we execute PRIVATEα′
2b
ε1

number of
times, we know that for all neighboring database D1, D2, for all queries Q1, · · · , Q2b/ε1 and for all
query answers x1, · · · , x2b/ε1 ,

Pr[∀i ∈ [2b/ε1]PRIVATEα′(D1, Qi) = xi] ≤ eα
′· 2bε1 Pr[∀i ∈ [2b/ε1]PRIVATEα′(D2, Qi) = xi],

where α′ · 2b
ε1

= α. Because the generated sanitized database is uniquely determined by the responses
of PRIVATEα′ , we can conclude that for all sanitized database D̂,

Pr[A(D1) = D̂] ≤ eα Pr[A(D2) = D̂],

which means our mechanism preserves α-differential privacy.

Now we prove that the mechanism is (ε, δ)-useful. Because PRIVATEα′ responses are not precise,
the mechanism may declare that each sub-interval has probability mass in [ε1/2− ε2, ε1/2+ ε2], but
in reality it’s not. We formalize this into an event FAILURE: there exists some sub-interval such that
its actual probability mass is less than ε1/2− ε2 or greater than ε1/2 + ε2, i.e., it deviates from ε1
for more than ε2.

By CDF of Laplace distribution, Pr[Lap(1/α′n) ≥ ε2] ≤ eα
′nε2 . Since we run PRIVATEα′ at most

2b/ε1 times, by union bound, we have

Pr[FAILURE] ≤ 2b/ε1 · eα
′nε2

Plugging in the lower bound on n, we get

Pr[FAILURE] ≤ δ.

We remain to show that when FAILURE doesn’t happen, i.e., when all sub-interval’s probability
mass is in the range, the difference of query responses of the original and sanitized databases doesn’t
exceed ε.

We first observe that potentially there is 2
ε1

·ε2 = ε/2 error, because for each sub-interval, the number
of data points in the sanitized database deviates at most n · (ε/2) from that in the original database. In
addition, the query answer to the sanitized database is almost always incorrect regarding how many
points are in the two sub-intervals that the interval query partially intersects with, as Figure 1 shows.
Therefore, we can potentially get another 2 · (ε1/2) = ε/2 error.

In total, the query answer from the sanitized database has at most ε error regarding that from the
original database. And because the even FAILURE will not happen for more than 1− δ probability,
we can conclude that our mechanism is (ε, δ)-useful. □

6 Lower Bounds

In this section, we present lower bounds for non-discretized databases. In particular, we represent a
database as a collection of points in R and we do this in the concept class C for interval queries, or
queries that say “How many points are contained within the following interval"). Clearly, this is a
1-dimensional version of a specific set of halfspace queries.

Suppose that there exists some mechanism that allows for usefully answering these queries while still
preserving α-differential privacy. Then, we would be able to binary search and answer the median
query with values that fall between 1/2− δ and 1/2 + δ. using A. We collate this into a theorem:

5

Theorem 6.1 No mechanism A can answer median queries M with outputs that fall between 1/2−
k, 1/2 + k percentile with positive probability on any real-valued database D while still preserving
α differential privacy for k < 1/2 and any α.

Proof. Consider a real-valued database containing elements in the interval [0, 1]. Let D0 = (0, . . . , 0),
the database containing n 0s.Then we must have by the assumption that Pr[A(D0,M) = 0] > 0.
However, since [0, 1] is a continuous interval, we know that there must be some value v ∈ [0, 1]
where Pr[A(D0,M) = v] = 0. We create a second database that contains these values. In particular,
let Dn = (v, . . . , v). That is, it contains n values of v. Likewise, for some Di, let this represent a
database containing i values of v and the rest (n− i) values of 0s. We know that Pr[A(Dn,M) =
v] > 0 by assumption again. However, for some i, we know that there must be a switch from when
Pr[A(Di,M) = v] = 0 (which is the case for D = D0) and Pr[A(Di,M) = v] > 0 (which is the
case when D = Dn. But at the instance Di to Di+1, these databases differ by only a single element,
which violates differential privacy for all α. □

Essentially what this is saying is that it’s impossible to answer the median queries truthfully (i.e. have
positive probability of being correct), while still preserving any notion of differential privacy. This
argument is indeed similar to those which we have seen in class. This then leads us to the corollary.

Corollary 6.2 No mechanism can be (ϵ, δ)-useful for the class of interval queries, nor for any class
C that generalizes interval queries for higher dimensions (for example, halfspaces, axis-aligned
rectangles, or spheres), while preserving α-differential privacy for any ϵ = o(n) and any α

Proof. The proof here is quite straightforward. Consider any real-valued database that contains
elements in the interval [0, 1]. Assume that A is (ϵ, δ) useful for interval queries and preserves
differential privacy. By construction, we show that we can answer median queries with outputs that
fall between 1/2− k, 1/2 + k percentile, and by theorem 6.1 contradicts the possibility of satisfying
differential privacy.

The construction is as follows. Let D̂ = A(D), that is, it generates the static database using the
privacy-preserving mechanism. Our algorithm then performs a binary search on this D̂. Specifically,
we want to find some interval [0, a] that contains n/2 + ϵ points. Since we know that all interval
queries on D̂ are correct within ±ϵ, we know that this binary search will be able to find our interval
[0, a]. However, this means that we have found the median, which is impossible. □

In light of this, and to avoid discretizing the database, we relax our definition of usefulness. In
particular,

Definition 6.3 (usefulness definition 2) A database mechanism A is (ϵ, δ, γ)-useful for queries in
class C according to some metric d if w.p. 1 − δ, for every Q ∈ C, and every database D,
|Q(A(D))−Q′(D)| ≤ ϵ for some Q′ ∈ C such that d(Q,Q′) ≤ γ

Essentially, this definition is saying that some mechanism is (ϵ, δ, γ)-useful in the case that with high
probability, the output of the query on the filtered database is similar to some other, similar query,
that would be answered on the full database. In essence it’s saying that a mechanism is useful if it is ϵ
close to answering some neighboring query completely correctly, but that this is still useful since the
queries are close together.

7 Answering Halfspace Queries

We now turn to a problem that is useful in various fields of math and computer science: Halfspace
queries.

Definition 7.1

Hy(D) =

∣∣∣{x ∈ D :
∑d

i=1 xi · yi ≥ 0
}∣∣∣

|D|
.

Intuitively, a halfspace query asks for the proportion of points in the database that lie on one side of a
halfspace. Our goal is to give a non-interactive differentially-private algorithm that is (ε, δ, γ)-useful
for halfspace queries.

6

We have the following definitions:

Definition 7.2 Define the distance between a point x and a halfspace Hy by d(x,Hy) = |x·y|
||x|| .

Define the distance between two halfspaces Hy1
and Hy2

, d(y1, y2), to be the sine of the angle
between y1 and y2. If d(y1, y2) ≤ γ, we say that they’re γ-close.

With these definitions, we can rephrase our goal: Given a halfspace Hy1
, output a value v such that

with high probability, |v −Hy2
(D)| < ε for some Hy2

that is γ-close to Hy1
. Note that even if Hy1

and Hy2
are close, the result of the halfspace queries Hy1

(D) and Hy2
(D) are not necessarily close,

because there may be many data points lying in one halfspace but not the other. However, this is
unlikely to happen if γ is small. One can think of γ as similar to the concept of margin in machine
learning.

The main challenge to achieving our goal is the lower bound given in the previous section. Since our
goal is to release a non-interactive database, we need much more than a sublinear number of queries.
Therefore, we will discretize our database as follows:

Definition 7.3 A halfspace query Hy is b-discretized if yi can be specified with b bits for each i ∈ [d].

Another tool that will be very helpful in our algorithm is random projections:

Definition 7.4 A random projection from Rd onto Rk is given by a d× k matrix M where each entry
is sampled uniformly and independently from {−1, 1}. The result of projecting the point x ∈ Rd onto
Rk using M is 1√

k
xM .

Note that we renormalize the projected vector by dividing it by its length, which is
√
k.

The reason that random projections help answer halfspace queries is the following theorem:

Theorem 7.5 (Johnson-Lindenstrauss) Let P be a random projection from Rd to Rk, and let
x, y ∈ Rd. Then

Pr
[
|d(x,Hy)− d(P (x), HP (y))| ≥

γ

4

]
≤ 2e−((γ/16)2−(γ/16)3)k/4.

In other words, it’s very unlikely for a random projection to change the distance between a point and
a hyperplane significantly.

We now describe the algorithm given in the paper [3].

Algorithm 1 Differentially Private Halfspace Query Access Mechanism (Curation Stage)
1: Randomly sample m random projections P1, . . . , Pm from Rd onto Rk and apply them to the

database.
2: For each random projection Pi, select a net of halfspaces Ni such that for every y1 ∈ Rk, there

exists Hy2
∈ Ni such that Hy1

and Hy2
are 3γ

4 -close.
3: We then make halfspace queries on the net of halfspaces in a differentially private way using the

Laplace mechanism and release the results.
4: We also release the random projections P1, . . . , Pm.
5: The original database can now be destroyed.

Algorithm 2 Differentially Private Halfspace Query Access Mechanism (Query Stage)
1: Input: given an arbitrary halfspace query Hy .
2: We first project the halfspace using the same set of random projections as in the curation stage.
3: For each projection Pi, we find and query the halfspace in the net Ni that is closest to Pi(y).
4: We return the median value of the queries.

The algorithm has the following guarantee:

Theorem 7.6 The above algorithm is (ε, δ, γ)-useful while maintaining α-differential privacy for a
database of size poly(log(1δ),

1
ε ,

1
α , b, d), for constant γ.

7

Here is the sketch of the proof:

We are choosing m random projections from Rd to Rk where there are n rows in the dataset. By
Johnson-Lindenstrauss, we can choose k such that the probability of d(x,Hy) changing by more
than γ

4 is at most ε1
4 . This gives us

k ≥ 4 ln(8/ε1)

(γ/16)2 − (γ/16)3
.

We say that a projection P makes a mistake on x and Hy if d(x,Hy) ≥ γ
4 , but sgn(x · y) ̸=

sgn(P (x) · P (y)). Intuitively, the point x is quite far away from the hyperplane, and it’s unlikely for
a random projection to change the distance significantly, but P changed the distance so much that
after the projection, the point lies on the other side of the hyperplane.

The value k is chosen such that the probability that a random projection makes a mistake on x and
Hy is at most ε1

4 . Thus, the expected number of mistakes that a random projection makes on a dataset
with n rows is ε1n

4 . Therefore, by Markov’s inequality, the probability that a random projection
makes more than ε1n mistakes on that dataset is at most 1

4 .

Now we use a Chernoff bound to bound the probability that more than half of the projections
(that is, m/2 projections) make more than ε1n mistakes. By Chernoff bound, that probability is
at most e−m/12. Next, since each b-discretized subspace is specified by bd bits, there can only be
2bd different possible b-discretized subspaces, so by a union bound, the probability that more than
half of the projections make more than ε1n mistakes relative to any discretized subspace is at most
δ1 = 2bde−m/12. We can solve for m in terms of δ1:

m ≥ 12

(
ln

1

δ1
+ ln(2)bd

)
.

We now turn to the differential privacy guarantee. First, we count the number of halfspaces in each of
our net of halfspaces. To guarantee that our halfspaces are dense enough such that any other halfspace
is 3γ

4 close to one of them, we use normal vectors v where each of v’s entries goes from −1 to 1 in
3γ
4 intervals, and we normalize v. In this way, we only need |Ni| = O(1/γk−1) halfspaces in each

of our nets.

For each of the halfspaces, we make a privacy-preserving query using the Laplace mechanism
PRIVATEα/(m|Ni|)(Pi(D), Hy). For a projected database Pi(D), we ask m|Ni| queries in total,
so we get α-differential privacy. By the union bound and the CDF of the Laplace distribution, the
probability δ2 that any query output differs from Hy(Pi(D)) by more than ε2 is at most

m ·O(1/γk−1)e−(ε2nα)/(mO(1/γk−1)).

We can then solve for n in terms of δ2, ε2,m, and k.

Putting everything together, by the analysis of the projections, with probability at least 1− δ1, using a
nearby query (3γ4 close) results in fewer than half of the projections making more than ε1n mistakes,
and since we’re taking the median of the results, we know that with probability at least 1− δ1, we
get at most ε1 error. In addition, we are choosing n large enough such that with probability at least
1− δ2, the privacy-preserving queries introduce at most ε2 error. Therefore, the theorem follows by
choosing ε1 = ε2 = ε

2 and δ1 = δ2 = δ
2 .

8 Future Work and Open Problems

One of the most interesting new directions in differential privacy is the intersection between machine
learning and differential privacy. In some sense, these goals are not in direct opposition. Machine
learning attempts to learn a function that describes the distribution of the data, not individual points.
Differential privacy, in the same vein attempts to obscure the individual points and leave only the
underlying distribution. Indeed, there exist differentially private versions of flavors of stochastic
gradient descent [11]. Even further, there exist differentially private versions of the multiplicative
weights algorithm [5]. Notable, however, many of these algorithms rely on the additive nature of (ϵ, δ)

8

differential privacy. Although there has been some advances in learning like differentially private
risk minimization [1] and learning SVMs in a differentially private manner [10], in the case of more
advanced models like large language models and transformers, concerns may arise of such models in
fact memorizing the dataset, and current work has been done to learn (and finetune) large language
models in a differentially private manner [13].

Another research direction is how to deal with data that is not scalar/vector. That is, such data which
is scalar or vector lends itself well to α-differentially private algorithms where they add noise to the
output/perturb the data slightly. On the other hand, when the data is in the form of graphs, it becomes
less clear how to perturb the data. Some research has been done to try and alleviate this problem [9].
However, it still remains an open question how best to handle such situations.

References
[1] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In Proceedings

of the 2000 ACM SIGMOD international conference on Management of data, pages 439–450,
2000.

[2] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: A holistic solution to contingency table release.
In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 273–282. Association for Computing Machinery, Inc., June 2007.

[3] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive
database privacy. CoRR, abs/1109.2229, 2011.

[4] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings
of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’03, page 202–210, New York, NY, USA, 2003. Association for Computing
Machinery.

[5] C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy. Foundations and
trends in theoretical computer science. Now, 2014.

[6] Cynthia Dwork. Differential privacy: A survey of results. In Manindra Agrawal, Dingzhu Du,
Zhenhua Duan, and Angsheng Li, editors, Theory and Applications of Models of Computation,
pages 1–19, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the Third Conference on Theory of
Cryptography, TCC’06, page 265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

[8] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned
databases. In 24th Annual International Cryptology Conference (CRYPTO 2004), volume 3152
of Lecture Notes in Computer Science, pages 528–544. Springer Verlag, August 2004.

[9] Tamara T. Mueller, Dmitrii Usynin, Johannes C. Paetzold, Daniel Rueckert, and Georgios
Kaissis. Sok: Differential privacy on graph-structured data, 2022.

[10] Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning in a large
function space: Privacy-preserving mechanisms for SVM learning. CoRR, abs/0911.5708, 2009.

[11] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pages 245–248, 2013.

[12] Jonathan R. Ullman. Answering nˆ{2+o(1)} counting queries with differential privacy is hard.
CoRR, abs/1207.6945, 2012.

[13] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath,
Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and
Huishuai Zhang. Differentially private fine-tuning of language models. In International
Conference on Learning Representations, 2022.

9

	Introduction
	Organization
	Related Works and the State of Differential Privacy
	Preliminaries
	Interval Queries
	Lower Bounds
	Answering Halfspace Queries
	Future Work and Open Problems

