
A Brief Introduction to Parameterized Complexity

Ishan Bansal (ib332), Haripriya Pulyassary (hp297)

December 15, 2023

1 Introduction

Parameterized complexity adds a finer layer to the analysis of languages than classical com-

plexity theory. Classically, metrics like computation time and space have been measured with

respect to the input size of an instance and nothing more. Parameterized complexity on the

other hand, considers additional parameters of the input instance allowing for a more fine-

grained analysis. Many interesting problems in computer science have natural parameters

defining the problem. For instance the vertex cover problem “Is there a vertex cover of size

k”? has the size of the vertex cover k as a parameter which is independent from the size

of the input graph. Similarly, the graph coloring problem “Can the graph be colored by at

most k colors”? has the number of colors k as a natural parameter. As we will shortly see,

the vertex cover problem has efficient parameterized algorithms while the situation for the

graph coloring problem is hopeless (unless P=NP). There were examples of parameterized

algorithms quite early on like Lenstra’s algorithm for integer programming [15] and the dis-

joint paths algorithm by Robertson and Seymour [16]. However, the formalism with which

it is studied today can be attributed to the early works of Downey and Fellows [10] in the

late 1980s. In this report, we present a brief overview of the basic concepts in parameterized

complexity including fixed-parameter tractability, slice-wise polynomial solvability, kerneliza-

tion, the W-hierarchy and Turing machine equivalences. We end with a discussion on recent

developments in the area of Steiner connectivity problems and an interesting open question

therein.

1

2 Preliminaries

In this section, we introduce the formal definitions of parameterized complexity.

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗×N, where Σ is a finite, fixed

alphabet. For an instance (x, k) ∈ Σ∗ × N, we refer to k as the parameter.

A well-studied parameterized problem is the Vertex Cover problem. Given a graph

G = (V,E), a vertex cover is a set of vertices S ⊆ V such that every edge has at least one

endpoint in S. The Vertex Cover problem is the following: Given a graph G and parameter

k, does there exist a vertex cover of size at most k? While we do not believe that there exists

an algorithm for Vertex Cover running in time poly(n, k) (unless P = NP), the following

recursive algorithm solves Vertex Cover in O(2kn) time.

Algorithm 1 VertexCoverFPT(G, k)

1: if G has no edges then
2: return True
3: end if
4: if k = 0 then
5: return False
6: end if
7: uv: an edge of G.
8: if VertexCoverFPT(G− u, k − 1) or VertexCoverFPT(G− v, k − 1) then
9: return True

10: end if
11: return False

We argue that the above algorithm is correct. The base cases are straightforward: if G

has no edges, the empty set is a vertex cover, and hence we return True. If G has at least

one edge, the size of a vertex cover is at least one – and hence, if k = 0 in this case, we return

False. Otherwise, we are in the recursive case. Let uv be some edge in G. Note that any

vertex cover S must contain u or v. Moreover, S is a vertex cover of G if and only if S − u

is a vertex cover of G − u, or S − v is a vertex cover of G − v. So, (G, k) is a Yes-instance

of Vertex Cover if and only if (G − u, k − 1) is a Yes-instance of Vertex Cover, or

(G− v, k − 1) is a Yes-instance of Vertex Cover.

The runtime of VertexCoverFPT, O(2kn), is polynomial in the size of G, and hence

we say it is “efficient”. More formally, we say that VertexCoverFPT is a fixed-parameter

2

tractable (FPT) algorithm; just as polynomial-time algorithms are considered “efficient” in

the standard setting, in parameterized complexity, FPT algorithms are considered to be the

holy grail of efficiency.

Definition 2.2. A parameterized problem L is fixed-parameter tractable (FPT) if there exists

a computable function f , constant c, and algorithm which correctly decides if (x, k) ∈ L in

time bounded by f(k) · |(x, k)|c.

We will typically assume that the function f is computable and non-decreasing (indeed,

this is without loss of generality as for every computable function f : N → N, there exists a

computable nondecreasing function f̄ that is never smaller than f).

Another parameterized problem of interest is the Independent Set problem. Given a

graph G = (V,E), an independent set is a set S ⊆ V such that for any pair of vertices u, v ∈ S,

uv /∈ E. The Independent Set problem asks the following question: given a graph G and

parameter k, does there exist an independent set of size at least k? While we do not believe

that this problem belongs to FPT, there exists an algorithm for Independent Set which

runs in O(k2nk) time; we say that such problems belong to the class XP. More formally,

Definition 2.3. A parameterized problem is slice-wise polynomial (XP) if there exists com-

putable functions f, g and an algorithm which correctly decides if (x, k) ∈ L in time bounded

by f(k) · |(x, k)|g(k).

Analogous to the traditional setting, we will find it helpful to use reductions to make

meaningful statements regarding the relative difficulty of different parameterized problems.

Instead of Karp reductions, we will work with parameterized reductions, which was first in-

troduced by Downey and Fellows. One important property of such reductions is that if there

is a parameterized reduction from A to B and B is in FPT, then A is also in FPT.

Definition 2.4. Let A,B be two parameterized problems. A parameterized reduction from

A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x′, k′) of B

such that

1. (x, k) is a yes-instance of A iff (x′, k′) is a yes-instance of B

2. k′ ≤ g(k) for some computable function g

3. The running time is f(k) · |x|O(1)

3

3 Kernelization

When faced with the task of solving an NP-Hard problem, almost every practical computer

implementation performs preprocessing steps or data reduction steps. The goal of such a

subroutine is to quickly solve the easy parts of a problem instance and reduce it to its difficult

core structure that can then be solved by slower exact algorithm. The language of parame-

terized complexity helps us in formalizing this concept and analyzing the effectiveness of such

preprocessing subroutines. This cannot be done in the context of classical complexity since

if the bit size of an instance of an NP-Hard problem could be reduced by even just one bit,

then this would imply that P=NP.

3.1 Formal Definitions

We begin with some formal definitions of data reductions and kernelizations.

Definition 3.1. A data reduction rule for a parameterized problem L is a function ϕ :

Σ∗ ×N → Σ∗ ×N that maps an instance (I, k) of L to an instance (I ′, k′) of L such that ϕ is

computable in polynomial time in |I| and k.

We will be interested in reduction rules that are safe which means that (I, k) ∈ L if and

only if (I ′, k′) ∈ L. Unless otherwise stated, all reduction rules we discuss will be required to

be safe. We measure the size of a data reduction rule as follows.

Definition 3.2. The output size of a data reduction rule ϕ is a function sizeϕ : N → N∪{∞}

defined as

sizeϕ(k) = sup{|I ′| + k′ : (I ′, k′) = ϕ(I, k), I ∈ Σ∗}

In other words, we consider all possible instances of the problem L with a fixed parameter

k and measure the supremum of the sizes of the resulting instances after applying the data

reduction rule ϕ. A kernelization algorithm, or simply kernel is a data reduction rule whose

output size is bounded by a function of the parameter k.

Definition 3.3. A kernelization algorithm, or simply a kernel, for a parameterized problem

L is a safe data reduction rule ϕ such that sizeϕ(k) ≤ g(k) for some computable function

g : N → N.

4

The above definition of kernelization captures the efficiency of the algorithm in terms of

the amount of data reduced or the function g. While practically, the running time may also

be of concern, in theory the only requirement is that the algorithm runs in polynomial time.

This definition of kernelization relates back to the notion of fixed parameter tractability in a

very natural way. The following lemma is due to Cai et al. [5].

Lemma 3.4 (Cai et al. [5]). A parameterized problem L is in FPT if and only if it admits

a kernelization algorithm.

Proof. First, if the problem L admits a kernelization algorithm ϕ, then given an instance (I, k),

we can apply the algorithm ϕ(I, k) to obtain an equivalent instance (I ′, k′) in polynomial time

such that |I ′| + k′ ≤ g(k) for some computable function g. But then, we can apply a brute

force search on all instances of size at most g(k) if required to decide the instance (I ′, k′).

This provides an FPT algorithm to decide the instance (I, k).

For the reverse direction, assume that the parameterized problem L is in FPT. Hence,

there is an algorithm A that decides if (I, k) ∈ L with running time f(k) · |I|c for some

constant c and some computable function f . We design the kernelization algorithm for L as

follows. Run the algorithm A on the input (I, k) for |I|c+1 steps. If the algorithm stops,

we have decided (I, k) and hence shrunk its size to one bit (yes or no). If not, then we can

conclude that |I|c+1 ≤ f(k) · |I|c and so |I| ≤ f(k). Hence, the kernelization algorithm can

output the same instance (I, k) and this has size at most f(k) + k.

3.2 Kernel for the Vertex Cover Problem

In this subsection, provide a kernelization algorithm for the vertex cover problem discussed

earlier. Here, we are given a graph G and a positive integer k as input, and the goal is to

decide if there exists a vertex cover of size at most k. We exhibit two reduction rules, the

repeated application of which would lead to a kernelization algorithm. This kernel was shown

by Buss and Goldsmith [4].

The first reduction rule is almost trivial. If the graph G has an isolated vertex v, then,

this vertex does not cover any edge and so we can safely remove it from the graph G.

5

Reduction Rule VC.1. If G contains an isolated vertex v, delete v from G. The new

instance is (G− v, k).

The second rule is based on the following observation. Suppose there exists a vertex v in

G of degree strictly larger than k, then the vertex v must lie in any vertex cover of size at

most k. This is because, all the edges incident to the vertex v must be covered and there are

at least k + 1 of them. Hence, the vertex cover cannot always include the other end-point of

these edges and must therefore include the vertex v. Thus our second rule is:

Reduction Rule VC.2. If G contains a vertex v of degree at least k + 1, then delete v

and its incident edges and reduce the parameter k by 1. The new instance is (G− v, k − 1).

Observe that both reduction rules can be applied in linear time and can be applied at

most n times where n is the number of vertices in the original graph G. Hence in polynomial

time, one can repeatedly apply reduction rules VC.1 and VC.2 in any desired order until none

of the rules are applicable anymore. We argue that in such a scenario, the size of the graph

G can be bounded by a function of k if the original instance was a yes instance.

Lemma 3.5. Let (G, k) be a yes-instance of the vertex cover problem. Let (G′, k′) be the

instance obtained after exhaustively applying reduction rules VC.1 and VC.2. Then, |V (G′)| ≤

k′2 + k′ and |E(G′)| ≤ k′2.

Proof. Note that both reduction rules VC.1 and VC.2 are safe and hence (G′, k′) is also a

yes-instance. Furthermore, k′ ≤ k since these reduction rules do not increase the parameter.

Let S be a vertex cover of G′ of size at most k′ ≤ k. Since we cannot apply reduction rule

VC.1 to G′, it does not have any isolated vertices. Hence, every vertex of G′ is adjacent to

some vertex of S. Since we cannot apply reduction rule VC.2 to G′, we know that every

vertex in S has degree at most k′ ≤ k. Hence the total number of vertices in the graph G′

can be bounded by |V (G′)| ≤ k′2 + k′ ≤ k2 + k. Furthermore, every edge in the graph G′ is

incident to a vertex in S by the definition of a vertex cover. Hence, the number of edges in

the graph G′ can be bounded bu |E(G′)| ≤ k′2 ≤ k2.

With the above lemma in place, we can obtain our final reduction rule that explicitly

6

bounds the size of the kernel.

Reduction Rule VC.3. Let (G, k) be an instance such that reduction rules VC.1 and

VC.2 are not applicable. If G has more than k2 + k vertices or more than k2 edges, then

conclude that (G, k) is a no-instance.

Putting together the above three reduction rules provides us with a kernelization algorithm

where the size of the final graph is bounded by a function of k. We explicitly state this in the

following theorem.

Theorem 3.6 (Buss, Goldsmith [4]). The vertex cover problem admits a kernel with O(k2)

vertices and O(k2) edges.

We would like to point out that the above result is in some sense tight by highlighting

a recent result in the context of lower bounds for kernelization. Due to the limited scope of

this project, we cannot provide proofs of the following theorems, but note that finding lower

bounds for kernelization algorithms is a very active area of research.

In a breakthrough result, Dell and Marx [9] proved the following theorem

Theorem 3.7 (Dell and Marx [9]). For any ϵ > 0, the vertex cover problem does not admit

a kernel of size O(k2−ϵ), unless NP ⊆ coNP/poly.

The proof of this result uses heavy machinery developed in the context of kernelizations

like compositions and distillations. At a very high level, the authors show that one can create

a vertex cover instance by considering a suitably defined OR-composition of a number of

multi-colored biclique problem instances. The multi-colored biclique problem is known to be

NP-Hard. They then apply the following theorem.

Theorem 3.8. Assume that an NP-Hard language L admits a weak cross-composition of

dimension d into a parameterized language Q. Suppose Q admits a kernel of size O(kd−ϵ) for

some ϵ > 0, then NP ⊆ coNP/poly.

We refer the reader to Chapter 15 in the book by Cyagn et al.[8] for a detailed exposition

of these results and ideas. Note that if the hypothesis NP ⊆ coNP/poly is true then, the

polynomial hierarchy collapses to the third level as shown by Yap [17].

7

4 The W-hierarchy

The W-hierarchy was introduced by Downey and Fellows, as an attempt to capture the exact

complexity of various hard parameterized problems. This hierarchy is defined using reductions

to certain classes of Boolean circuits. Recall that a Boolean circuit is a directed acyclic graph

every node of indegree 0 is an input node, every node of indegree 1 is a negation node, and

every other node is an AND-node or an OR-node. Furthermore, exactly one of the nodes

with outdegree 0 is the output node. The depth of a circuit is the maximum length of a path

from an input node to the output node. We say that a node is “large” if it has an indegree

strictly larger than 2. The weft of a boolean circuit is the maximum number of large nodes

on any path from an input node to the output node.

An assignment of 0-1 values to the input nodes determines the value of all other nodes

in the circuit. Such an assignment is satisfiable if the output gate has a value of 1. We say

that the weight of an assignment is the number of input gates receiving a value of 1. We are

now ready to define the following parameterized circuit satisfiability problem, which will be

crucial when defining the W-hierarchy.

Weighted Circuit Satisfiability (WCS): Given circuit C and an integer k, does C have

a satisfying assignment of weight exactly k?

If C is a class of circuits, then we define WCS[C] to be the restriction of the problem where

the input circuit C belongs to C. We are particularly interested in Ct,d, the class of circuits

of weft at most t and depth at most d.

Definition 4.1 (W-hierarchy). A parameterized problem P belongs to W[t] if there is a

parameterized reduction from P to WCS[Ct,d] for some d ≥ 1.

Notice that FPT=W[0] and W[i] ⊆ W[j] for all i ≤ j. Furthermore, we say a problem

P is W[t]-hard if, for every P ′ ∈ W[t], there exists a parameterized reduction from P ′ to P .

An example of a W[1]-complete problem is the Independent Set problem discussed earlier.

The proof that Independent Set is W[1]-complete is non-trivial and hence is omitted. We

do, however, provide an argument showing that Independent Set is in W[1].

Let (G, k) be an instance of the Independent Set problem. We construct a boolean

8

circuit C in the following manner: Each node v ∈ V corresponds to an input node of the

circuit, and is connected to a negation node. For every edge uv ∈ E, the negation nodes

corresponding to u and v are connected to an OR node; and all OR nodes (corresponding to

the edges) are connected to a single AND node, which is also the output node. Note that this

circuit has exactly one large node (the output node), and hence has a weft of 1. An example

of an Independent Set instance and its corresponding boolean circuit is given in Figure 1.

We claim that an assignment in this circuit is satisfiable if and only if it corresponds to

an independent set in G. If we have an independent set S, we can assign a value of 1 to the

input node corresponding to each v ∈ S; this is a satisfiable assignment as for each OR node

(corresponding to an edge), at least one of the inputs will be 1. Moreover, the weight of this

assignment is precisely the size of the independent set. We now prove the other direction.

Suppose we have a satisfiable assignment, and assume to arrive at a contradiction that uv ∈ E

for some u, v which have been assigned a value of 1. Then, the OR-gate corresponding to uv

receives zeros as both of its input, and hence passes a value of 0 to the output AND node

– which is a contradiction. Every satisfiable assignment corresponds to an independent set;

moreover, the weight of the assignment is the size of the independent set. Thus, Indepen-

dent Set reduces to finding a satisfiable assignment of weight at most k in a weft-1 circuit.

a

b c

d e

¬ ¬ ¬ ¬ ¬

∨∨ ∨ ∨ ∨ ∨ ∨

∧

Figure 1: An Independent Set instance

An interesting observation about the W-hierarchy is that NP-complete problems, which

are equivalent to each other with respect to polynomial-time reductions, occupy different

classes in the W-hierarchy. For instance, the Set Cover problem (wherein one is given a

universe U , collection of sets S, parameter k, and must decide does there exist S ′ ⊆ S such

that ∪S∈S′S = U and |S ′| ≤ k?) is NP-complete; hence, it is equivalent, with respect to

9

polynomial-time reductions, to the Independent Set problem. However, in terms of the W-

hierarchy, Set Cover is W [2]-complete and hence is in a different parameterized complexity

class than Independent Set.

The definition of the W-hierarchy, and particularly the class W[1] is in terms of boolean

circuits. Cai et al [5] studied the connection between W[1] and Turing machines. Informally,

when answering the P ̸= NP problem, one must decide in deterministic polynomial time if

a non-deterministic Turing machine (NDTM) has an accepting path; the parameterized ana-

logue is to decide in FPT time if an NDTM has a computation path reaching an accepting

state in at most k steps. Formally, we define the Short Turing Machine Acceptance problem

as follows.

Short Turing Machine Acceptance: Given an NDTM M , a string x, and an integer k;

the task is to decide if M with input x has a computation path reaching an accepting state

in at most k steps.

The Short Turing Machine Acceptance problem is W[1]-complete. It is con-

jectured that FPT̸=W[1]. As Short Turing Machine Acceptance problem is W[1]-

complete, and it seems unlikely that there exists an FPT algorithm that can decide if M

with input x has a computation path reaching an accepting state in at most k steps, it seems

more likely that FPT̸=W[1].

5 Steiner Connectivity Problems

In this section we discuss some network design problems in the context of parameterized

complexity. In particular we will discuss Steiner connectivity problems. The general goal

of network design is to find a cheap subgraph of a given input graph that satisfies some

pre-defined connectivity requirements. For instance, in the well-known minimum spanning

tree problem, we are given a graph G = (V,E) with costs on the edges, and the goal is to

find a cheapest subgraph (V, F) which is connected. In Steiner connectivity problems, the

connectivity requirements are only between a given subset of the node set called terminals.

Other nodes are called Steiner nodes, named after the Swiss mathematician Jakob Steiner.

10

The analog of the minimum spanning tree problem in the Steiner setting is the Steiner tree

problem where the input is a graph G = (V,E) with edge costs and a set of terminals T ⊆ V .

The goal is to find a cheapest subgraph G′ = (V ′, E′) such that all terminals are included,

T ⊆ V ′, and the graph G′ is connected. While the minimum spanning tree problem is

polytime solvable, the Steiner tree problem is known to be NP-Hard. We provide a short

survey of some known results in the parameterized analysis of Steiner connectivity problems

and end with an interesting open question. We will also try to provide sketches of proofs

where possible. We restrict our attention to Steiner connectivity problems where every edge

has unit cost.

We mention two natural parameters that we will consider in our discussions. First, is

the solution size that we denote by ℓ. The parameterized problem here is “Does there exists

a feasible solution with at most ℓ edges” where a feasible solution depends on the specific

problem in hand. The second parameter is the number of terminals in the input instance,

|T |. We denote this by k. The parameterized problem here is “Find the cheapest feasible

solution given k terminals”. Note that we can always assume k ∈ O(ℓ) since to even just

connect k terminals, we require at least k− 1 edges. Hence, a hardness result with respect to

parameter ℓ will imply a hardness result with respect to parameter k. Similarly, an algorithm

with respect to parameter k will imply an algorithm with respect to parameter ℓ.

The first result we discuss is an old result by Dreyfus and Wagner [11] showing that the

Steiner tree problem is in FPT with respect to the parameter k (hence also parameter ℓ) in

both directed and undirected graphs.

Theorem 5.1 (Dreyfus, Wagner [11]). The Steiner Tree problem can be solved in both directed

and undirected graphs in time 3knO(1).

Proof. The insight here is to use a dynamic programming algorithm and identify that con-

nected subtrees of the optimal Steiner tree must be optimal Steiner trees themselves on a

restricted set of terminals. Define the states of the dynamic program to be H[T ′, v] where T ′

is a subset of the terminals and v ∈ V is some vertex that will act as a root. H[T ′, v] denotes

the optimal Steiner Tree connecting every terminal in T ′ with v as a root. The dynamic

program can be initialized by observing that if |T ′| = 1, then H[T ′, v] is simply the shortest

path from v to the node in T ′. The recursion for the program can be obtained by observing

11

that for any subset of terminals T ′ and root v, we can start from v and follow the nodes in

H[T ′, v] until we arrive at the first node u of degree at least three (this could be v itself).

Then, this node creates multiple branches of the tree H[T ′, v] and each branch has a subset of

the terminals T ′ in it. But then, we can use the information from states previously computed

for H[T ′′, u] to obtain the optimal tree H[T ′, v]. Formally,

H[T ′, v] = min
u∈V \T
T ′′⊊T ′

H[T ′′, u] + H[T ′ \ T ′′, u] + dist(v, u)

Note that, we are abusing notations by using H[T ′, v] to denote both the optimal tree and

its cost. Additionally, we take u ∈ V \ T in the minimum above since we can assume that

terminals in the input graph have degree exactly one by essentially hanging them off the

original terminals. The above recursion provides an exact dynamic programming algorithm

to solve the Steiner tree problem and its run-time can be calculated to be 3knO(1).

To be connected in an undirected graph is to have a path between every pair of vertices.

In the context of directed graphs, the equivalent notion is called strongly connectedness.

While the Steiner tree problem is in FPT for undirected (and directed) graphs, the Steiner

strongly connected subgraph problem has been shown to be W[1]-Hard with respect the the

parameter ℓ (hence also parameter k).

Theorem 5.2 (Guo, Niedermeier, Suchy [14]). The Steiner strongly connected subgraph prob-

lem is W[1]-Hard with respect to the parameter ℓ.

Proof. We present a brief sketch of the proof when ℓ is the number of vertices in a solution and

not edges for simplicity. The idea is to provide a parameterized reduction from the W[1]-

Hard problem Multicolored Clique. Here the input is a graph G with a partition of the

vertices into t color classes V1, . . . , Vt. The goal is to find a clique containing one vertex from

each color class. The intuitive idea of the reduction is to create vertices for every edge in the

graph G and to force a feasible strongly connected solution to pick up one vertex from each

color class and
(
t
2

)
edges connecting these vertices. We then set the value of ℓ accordingly

so that a strongly connected subgraph with at most ℓ vertices implies the existence of a

multicolored clique in the original graph. We refer the reader to the original paper [14] for

the full details.

12

While on general directed graphs, the Steiner strongly connected subgraph problem is

W[1]-Hard, it has been shown that if one restricts their attention to bidirected instances,

then the problem becomes fixed parameter tractable with respect to parameter k (hence also

parameter ℓ). A bidirected instance is one where if an edge exists, then the edge in it reverse

direction also exists.

Theorem 5.3 (Chitnis, Feldmann, Manurangsi [7]). The Steiner strongly connected subgraph

problem on bidirected graphs can be solved in time 4O(k2)nO(1).

Proof. The algorithm here also proceeds via dynamic programming but is far more involved

than the Dreyfus-Wagner algorithm for Steiner trees. A key observation here is that an opti-

mal solution can be decomposed into smaller strongly connected components of treewidth one

(called poly-trees), whose union gives the whole solution. These smaller strongly connected

components contain a subset of the terminal set T in specific patterns. All such patterns

can be enumerated in FPT time 2O(k2), and once a pattern is fixed, one can apply a previous

result by Feldmann and Marx [12] to compute optimal poly-trees. There they show that if the

optimal solution of a Steiner strongly connected subgraph problem has constant treewidth,

then it can be found in FPT time. Now, one can apply a dynamic programming technique

similar to the Dreyfus-Wagner result. The difference being that in the Steiner tree problem,

the DP is trying to attach trees together, while here we will attach poly-trees together.

Moving back to undirected graphs, if we take a strongly connected directed graph and

undirect every edge or treat every edge as being undirected, then we obtain what is called a

2-edge connected graph. Formally, a graph is 2-edge connected if there exist two edge-disjoint

paths between every pair of nodes u, v. A cycle is the simplest 2-edge connected subgraph.

The Steiner cycle problem asks for a cheapest subgraph which is a cycle and contains all the

terminals. The following result shows that the Steiner cycle problem is in FPT with respect

to parameter k (hence also parameter ℓ). The techniques used to prove this result are more

algebraic.

Theorem 5.4 (Bjorklund, Husfeldt, Taslman [3]). The Steiner cycle problem can be solved

in time 2knO(1) via a randomized algorithm.

Proof. The idea here is to assign a variable to each edge in the graph and compute a poly-

nomial over some large field of characteristic 2 that evaluates to a non-zero if and only if

13

there exists a cycle through all the terminals of a specified length h. Then, one can randomly

assign values to the edge variables and apply the Shwartz-Zippel lemma to decide if there

exists such a cycle. The particular polynomial is computed via a dynamic program. In par-

ticular, it computes a sum of all closed walks of length h starting and ending at a chosen

terminal t and passing through all other terminals. If this walk has a sub-cycle, then going

around this cycle in different orientations, provides two different ways to obtain the same

polynomial term. Since the field has characteristic two, these two terms cancel out. Hence,

the only closed walks that survive are cycles. We can run this algorithm for different guesses

of h = 1, . . . , n to obtain the smallest h that provides a Steiner cycle. Note that the above

mechanism only detects the length of the optimal solution but does not find it. To actually

find the optimal solution, one can run this idea again and again after guessing the first edge

of the Steiner cycle and then the second edge and so on.

Generalizing the Steiner cycle problem, we obtain the Steiner 2-edge connected problem.

Here, the goal is to compute a cheapest subgraph H = (V ′, E′) of the input graph G such that

H is 2-edge connected and contains all the terminals, T ⊆ V ′. The following result places

this problem in FPT with respect to the parameter ℓ, but not with respect to the parameter

k!

Theorem 5.5 (Feldmann, Mukherjee, Leeuwen [13]). The Steiner 2-edge connected problem

can be solved in time 2O(ℓ log ℓ)nO(1) time.

Proof. The proof relies on a common color coding technique that is useful when the parameter

is the solution size, along with a neat decomposition of optimal solutions. Using an earlier

result by Chekuri and Korula [6] to show that an optimal solution can be decomposed into

edge-disjoint trees whose leaves are terminals. To figure out what the correct partition of

terminals and edges are into these edge-disjoint trees, one can randomly color the edges and

vertices of the input graph so that with probability at least 2−O(ℓ log ℓ), each of the optimal

edge-disjoint trees that the optimal solution decomposed into lies in a different color class.

One can then apply FPT algorithms for Steiner tree to compute the edge-disjoint trees and

take their union to obtain the final solution. The color coding technique is borrowed from the

work of Alon, Yuster and Zwick [1] and can be derandomized.

The above result does not say anything about the status of the Steiner 2-edge connected

14

subgraph problem with respect to the parameter k. Recently, we showed that the problem

lies in XP.

Theorem 5.6 (Bansal, Cheriyan, Grout, Ibrahimpur [2]). The Steiner 2-edge connected

subgraph problem can be solved in time nO(k) via a randomized algorithm where n is the

number of vertices in the input graph.

Proof. The idea here is to utilize the ear decomposition of 2-edge connected subgraphs. Es-

sentially what this says is that any 2-edge connected subgraph can be decomposed into cycles

(ears). Hence, a natural algorithm is to guess the terminals on each ear of the decomposition

and use the earlier result of Bjorklund et al. [3] to find optimal Steiner cycles passing through

these terminals. However, one also needs to guess all nodes of the optimal solution of degree

at least three to paste these cycles back together. The issue now is that the number of ears

in the optimal solution and hence the number of high-degree nodes could be as large as Ω(n).

To overcome this, one can consider the maximal 2-node connected subgraphs (blocks) of the

optimal solution and the 2 edge-disjoint paths that connect these blocks together. Optimal

2-node connected subgraphs only have O(k) high degree nodes and this solves the issue. Thus

the algorithm essentially guesses all blocks of the optimal solution and then computes these

blocks using the FPT algorithm for the Steiner cycle problem, and then pastes these blocks

together using 2 edge-disjoint paths.

5.1 Open Questions

To conclude our report, we mention some interesting open questions that arise naturally out

of our previous discussions on Steiner connectivity problems. The first is to do with the pa-

rameterized complexity of the Steiner 2-edge connected subgraph problem. Feldmann et al.

[13] showed that the problem is in FPT with respect to parameter ℓ and Bansal et al. [2]

showed that the problem is in XP with respect to the parameter k. This begs the following

question:

Open Question 1: Is the Steiner 2-edge connected subgraph problem in FPT or is it

W[1]-Hard?

15

Note that all the results we have discussed are in the setting where all edge costs are

unit. What happens when the edge costs are allowed to be arbitrary? Here, the Steiner tree

problem is still in FPT as shown by Dreyfus and Wagner [11]. Bansal et al. [2] showed that

the Steiner cycle problem admits a fully polynomial time approximation scheme (FPTAS) in

FPT time and the Steiner 2-edge connected subgraph problem admits an FPTAS in XP time.

But the question of exact algorithms remains open.

Open Question 2: Is the Steiner cycle problem with arbitrary edge costs in FPT?

Finally, we consider parameterized approximation algorithms for the Steiner 2-edge con-

nected problem. It is well known that a polynomial time 2-approximation algorithm can be

obtained for this problem via Jain’s iterative rounding, for example [?]. But perhaps one can

do better given FPT time.

Open Question 3: Is there an approximation algorithm for the Steiner 2-edge-connected

subgraph problem that runs in time f(k)nO(1) that obtains an approximation factor smaller

than 2?

References

[1] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),

42(4):844–856, 1995.

[2] Ishan Bansal, Joe Cheriyan, Logan Grout, and Sharat Ibrahimpur. Algorithms for 2-

connected network design and flexible steiner trees with a constant number of terminals.

arXiv preprint arXiv:2206.11807, 2022.

[3] Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest cycle through specified

elements. In Proceedings of the twenty-third annual ACM-SIAM symposium on discrete

algorithms, pages 1747–1753. SIAM, 2012.

[4] Jonathan F Buss and Judy Goldsmith. Nondeterminism within pˆ. SIAM Journal on

Computing, 22(3):560–572, 1993.

16

[5] Liming Cai, Jianer Chen, Rodney G Downey, and Michael R Fellows. On the parameter-

ized complexity of short computation and factorization. Archive for Mathematical Logic,

36(4-5):321–337, 1997.

[6] Chandra Chekuri and Nitish Korula. A graph reduction step preserving element-

connectivity and packing steiner trees and forests. SIAM Journal on Discrete Math-

ematics, 28(2):577–597, 2014.

[7] Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized ap-

proximation algorithms for bidirected steiner network problems. ACM Transactions on

Algorithms (TALG), 17(2):1–68, 2021.

[8] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4.

Springer, 2015.

[9] Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the

twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 68–81. SIAM,

2012.

[10] Rod G Downey and Michael R Fellows. Fixed-parameter tractability and completeness.

University of Victoria, Department of Computer Science, 1991.

[11] Stuart E Dreyfus and Robert A Wagner. The steiner problem in graphs. Networks,

1(3):195–207, 1971.

[12] Andreas Emil Feldmann and Dániel Marx. The complexity landscape of fixed-parameter

directed steiner network problems. ACM Transactions on Computation Theory, 2017.

[13] Andreas Emil Feldmann, Anish Mukherjee, and Erik Jan van Leeuwen. The parameter-

ized complexity of the survivable network design problem. In Symposium on Simplicity

in Algorithms (SOSA), pages 37–56. SIAM, 2022.

[14] Jiong Guo, Rolf Niedermeier, and Ondřej Suchỳ. Parameterized complexity of arc-

weighted directed steiner problems. SIAM Journal on Discrete Mathematics, 25(2):583–

599, 2011.

17

[15] Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathe-

matics of operations research, 8(4):538–548, 1983.

[16] Neil Robertson and Paul D Seymour. Graph minors. xiii. the disjoint paths problem.

Journal of combinatorial theory, Series B, 63(1):65–110, 1995.

[17] Chee K Yap. Some consequences of non-uniform conditions on uniform classes. Theoret-

ical computer science, 26(3):287–300, 1983.

18

