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1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently computed (in polynomial
time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse polynomial
probability for infinitely many input lengths n. Whether one-way functions exist is unequivocally
the most important open problem in Cryptography (and arguably the most important open problem
in the theory of computation, see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient for
many of the most central cryptographic primitives and protocols [BM84, HILL99, GGM84, GM84,
Rom90, Nao91, FS90, Blu82]. However, the existence of OWFs will immediately imply that the
(worst-case) hardness of NP (or NP ̸⊆ BPP). (In addition, it will also imply that NP is average-case
hard: efficient algorithms cannot decide NP languages even when the instances are sampled from an
efficient distribution.) Thus, proving the existence of OWFs unconditionally seems far beyond reach.
The question, then, is whether the existence of OWFs can be based on NP ̸⊆ BPP. Indeed, this
question, originating in the seminal work of Diffie and Hellman [DH76], is often referred to as the
“holy-grail” of Cryptography. Observe that to resolve the holy-grail, it is sufficient (and necessary)
to prove that (1) the worst-case hardness of NP implies the average-case hardness of NP and (2)
the average-case hardness of NP gives Cryptography (or to exclude “Heuristica” and “Pessiland” in
Impagliazzo’s Five Worlds [Imp95]).

Recently, there is a sequence of works trying to make progress towards showing (1) and (2). These
works, starting with the work by Hirahara [Hir18], are closely related to meta-complexity problems.
Meta-complexity problems are problems themselves concerning the complexity (of strings). One no-
table example is the time-bounded Kolmogorov complexity problem (MKtP) (parametrized by the
running time bound t), in which given a string x, we are asked to decide whether the length of
the shortest t(|x|)-time-bounded program that produces the string x is at most, e.g., |x|/2. Hira-
hara [Hir18] presented a worst-case to average-case reduction for an approximation variant of MKtP,
and thus roughly speaking, to deduce (1), we only need to show the NP-hardness of (the approxima-
tion variant of) MKtP.

In addition, a recent result by Liu and Pass [LP20] showed that average-case hardness of MKtP
is equivalent to the existence of OWFs. However, the average-case hardness needed in [LP20] is
slightly different from the notion in [Hir18]. (Specifically, [LP20] considers the notion of two-sided
average-case hardness whereas [Hir18] considers errorless average-case hardness.) Taken together,
it would seem that resolving the holy-grail of Cryptography boils down to proving NP-hardness of
MKtP and filling the gap between two notions of average-case hardness for MKtP.

Somewhat surprisingly, a very recent result by Hirahara [Hir23] formalized this folklore intuition.
Moreover, using his proof techniques, we are able to show that the gap between two notions of
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average-case hardness can be filled if we consider a stronger variant of NP-hardness of MKtP. Thus,
if we assume the (stronger variant of) NP-hardness of MKtP, then just NP ̸∈ BPP implies the
existence of OWFs. The stronger variant requires that there exists a single reduction that proves
NP-hardness of MKtP for all sufficiently large polynomial t. However, there is evidence that this
stronger variant of NP-hardness of MKtP is unlikely to holds [SS22]. To get around this impossibility
result, Hirahara [Hir23] instead considered a “distributional” variant of MKtP. [Hir23] proved that
the stronger variant of NP-hardness of “distributional” MKtP is a plausible assumption (implied by
the existence of OWFs), and assuming it holds, NP ̸⊆ BPP implies the existence of OWFs.

In this course project, we aim to survey the ideas behind [Hir23]. We will focus on the promise
problem Gap∞MKtP, formally defined in Section 2.1, which in our eyes is a good candidate problem
to be used to reflect ideas in [Hir23]. The other important notions used in this report can also be
found in Section 2.

We will generalize [SS22] to also show that the problem Gap∞MKtP is unlike to be NP-hard via
a parametric-honest reduction (formally stated and proved in Section 3). We say that a reduction R
is parametric-honest if |R(x)| ≥ |x|Ω(1) for all strings x.

Theorem 1.1. Assume that Gap∞MKtP is NP-hard (via a parametric-honest reduction) and AM =
NP. Then, NE = coNE.

We will present proofs (or proof sketches) for the statement that if Gap∞MKtP is NP-hard,
then NP ̸⊆ BPP implies the existence of the so-called “auxiliary-input” one-way functions (formally
defined in Section 2.4).

Theorem 1.2. Assume that NP ̸∈ BPP and Gap∞MKtP is NP-hard for some polynomial t (via a
parametric-honest reduction). Then, there exists an auxiliary-input OWF.

We remark that even if the assumption in the above theorem is unlikely to hold and we only get
auxiliary-input one-way functions (as opposed to standard OWFs), we still find many ideas in the
proof of the above theorem very interesting and therefore decide to present the proof. Theorem 1.2 is
proved by combining the ideas in [Hir18] (briefly reviewed in Section 4) and [Nan21] (briefly reviewed
in Section 5). Finally, we give a proof sketch for Theorem 1.2 in Section 6.

2 Preliminaries

Let Q = {Qx}x∈{0,1}∗ be a family of distributions. Q is said to be polynomial-time samplable if there
exists a randomized polynomial-time machine M such that for every x ∈ {0, 1}∗, M(x) samples the
distribution Qx.

2.1 Kolmogorov complexity

Let U be some fixed Universal Turing machine that can emulate any Turing machine M with poly-
nomial overhead. Given a description Π ∈ {0, 1}∗ which encodes a pair (M,w) where M is a
(single-tape) Turing machine and w ∈ {0, 1}∗ is an input, let U(Π, 1t) denote the output of M(w)
when emulated on U for t steps. Note that (by assumption that U only has polynomial overhead)
U(Π, 1t) can be computed in time poly(|Π|, t).

The t-time bounded Kolmogorov Complexity, Kt(x), of a string x [Kol68, Sip83, Tra84, Ko86] is
defined as the length of the shortest description Π such that U(Π, 1t) = x:

Kt(x) = min
Π∈{0,1}∗

{|Π| : U(Π, 1t(|x|)) = x}.
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When there is no running time bound, we recover the notion of Kolmogorov Complexity, which is
defined to be

K(x) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N, U(Π, 1t) = x}.

In this report, we are going to focus on the promise problem Gap∞MKtP, defined as follows. For
any polynomial t(n) ≥ 0, let Gap∞MKtP denote the following promise problem where

• YES instances: x ∈ {0, 1}∗, Kt(x) ≤
√
|x|.

• NO instances: x ∈ {0, 1}∗, K(x) ≥ 2
3 |x|.

2.2 Hitting Set Generators

We recall the notion of hitting set generators (HSG) [ACR98, ACRT99] that we consider in this
report. Roughly speaking, an efficient computable function H : {0, 1}ℓ(n) → {0, 1}n is said to be a
HSG if no PPT attacker A “avoids” H for all n ∈ N. And we say that A avoids H on strings of length
n if A always output 0 on strings in the range of H(Uℓ(n)) but outputs 1 with probability at least
1/2 over a random string. We mention that hitting set generators are usually used to derandomize
one-sided randomized algorithms and people often only require that no a-priori poly-time bounded
machines (or circuits) avoid H. In this report, we instead look at “cryptographic” HSGs where we
ask its security to hold against all PPT machines.

Definition 2.1 (Hitting set generators (HSG)). We say that an efficiently computable function
H : {0, 1}ℓ(n) → {0, 1}n is a hitting set generator (HSG) if ℓ(n) < n and there is no PPT attacker
A that avoids H for all n ∈ N, where A avoids H on strings of length n if for every x ∈ {0, 1}ℓ(n),
y = H(x), it holds that

Pr[A(y) = 1] ≤ 1/3

and
Pr[A(Un) = 1] ≥ 1/2

2.3 Karp Reductions and Weakly Black-box Reductions

Karp reductions For any languages L,L′ and a randomized poly-time algorithm R, we say that
R is a Karp reduction from L to L′ if |R(x)| = |R(x′)| for any x, x′, |x| = |x′|, and for any x ∈ L,
n = |x|,

Pr[R(x) ∈ L′] ≥ 2/3

and for any x ̸∈ L, n = |x|,
Pr[R(x) ̸∈ L′] ≥ 2/3

We can define the reduction R in a similar way when L or L′ is a promise problem (as opposed to a
language). We say that the reduction R is parametric-honest if there exists a constant γ > 0 such
that |R(x)| ≥ |x|γ for every x ∈ {0, 1}∗.

(Weakly) black-box reductions We turn to introducing the notion of weakly black-box reduction
we rely on. Roughly speaking, a black-box reduction from a task A to a task B is a (probabilistic)
poly-time oracle machine R such that for every oracle O that solves the task B, RO solves the task
A. A weakly black-box reduction is just a black-box reduction except that it puts some restrictions
on O: It only works when O can be implemented by a “short” machine. In this report, we will focus
on such reductions from a language L to avoiding some HSG H : {0, 1}ℓ(m) → {0, 1}m.
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Definition 2.2 ((Weakly) black-box reduction). Let L be a language and H : {0, 1}ℓ(m) → {0, 1}m
be a efficiently computable function. We say that a probabilistic poly-time oracle machine R is a
black-box reduction from L to avoiding the HSG H if for every n ∈ N, R on input length n only
make oracle queries on strings of length m = m(n), and for every x ∈ {0, 1}n, every O such that O
avoids the HSG H on strings of length m, it holds that

Pr[RO(x) = L(x)] ≥ 2/3

We say that R is just weakly black-box if the above condition only holds when O can be implemented
by a probabilistic machine of description length ≤ 2m.

In addition, we say that R is non-adaptive if the queries R makes to O do not depend on the
answers to the previous queries that R makes to O before them. We say that R is length-increasing
if it holds that m ≥ n. We say that R is parametric-honest if it holds that m ≥ nΩ(1).

We remark that we can define weakly black-box reduction from a promise problem Π to avoiding
some HSG in a similar way.

2.4 (Auxiliary-input) One-way Functions

We start by recalling the standard definition of one-way functions (OWFs).

Definition 2.3 (OWFs). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is
said to be a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function
µ such that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We move on to introducing the notion of auxiliary-input one-way functions. Roughly speaking,
an auxiliary-input OWF is a family of functions {fx}x∈{0,1}∗ (indexed by the auxiliary input) such
that for every attacker A, there are infinitely many indices x such that fx will be one-way with
respect to A.

Definition 2.4 (Auxiliary-input OWFs). Let f = {fx : {0, 1}p1(|x|) → {0, 1}p2(|x|)}x∈{0,1}∗ be a
family of polynomial-time computable functions where p1, p2 are polynomials. f is said to be an
auxiliary-input one-way function (auxiliary-input OWF) if for every PPT algorithm A, there exists
a negligible function µ and an infinitely sequence of auxiliary-input I ⊆ {0, 1}∗ such that for every
x ∈ I, n = |x|,

Pr[z ← {0, 1}p1(n); y = fx(z) : A(1
n, x, y) ∈ f−1

x (fx(z))] ≤ µ(n)

3 Impossibility Result for the NP-hardness of Gap∞MKtP

In this section, we aim to show that Gap∞MKtP is unlikely to be NP-hard. Towards this, we will
show that if there exists a Karp reduction proving the NP-hardness of Gap∞MKtP and additionally
AM = NP, then NE = coNE. Note that AM = NP is very likely to hold since it follows from plausible
circuit lower bounds [KVM02, MV05], and on the other hand, the conclusion NE = coNE is very
unlikely to be true. Taken together, we conclude that it’s quite unlikely for such a reduction to exist,
and Gap∞MKtP is unlikely to be NP-hard.
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Some Additional Preliminaries We start by recalling the entropy approximation problem [GSV99].
The entropy approximation problem is a promise problem where

• YES instances: (C, k) where C is a circuit mapping {0, 1}n → {0, 1}m, k is an integer, and
H(C(Un)) ≥ k.

• NO instances: (C, k) where C is a circuit mapping {0, 1}n → {0, 1}m, k is an integer, and
H(C(Un)) ≤ k − 1.

In addition, the entropy approximation problem is in AM ∩ coAM [AH91].
We are now ready to state the main theorem of this section.

Theorem 3.1 ([SS22, AHT23]). Assume that there exist a polynomial t, and a parametric-honest
randomized Karp reduction R from SAT to Gap∞MKtP, and AM = NP. Then, NE = coNE.

Proof: By a standard padding argument, to show that NE = coNE, it suffices to prove that all
tally languages ∈ NP are in NP ∩ coNP. Consider any tally NP language L. By the Cook-Levin
Theorem, there exists a (parametric-honest) deterministic poly-time Karp reduction R′ that reduces
L to SAT. Recall that by our assumption, there exists a (parametric-honest) randomized poly-time
Karp reduction R that reduces SAT to Gap∞MKtP. By combining the two reduction, we obtain a
(parametric-honest) randomized poly-time Karp reduction M that reduces L to Gap∞MKtP. We will
use the reductionM to construct a reduction from L to the complement of the entropy approximation
problem.

For any instance 1n in the tally language, let C be the circuit that computes the reduction M(1n):
C takes as input a random tape of M(1n), r ← R (where R is the distribution of the random tape),
and emulates M(1n) on the random tape r. Let m denote the output length of M(1n), and k = 7

18m.

(Recall that M is parametric-honest, and thus m ≥ nΩ(1).)
We first show that if 1n ∈ L, then H(C(R)) ≤ k − 1 (when n is sufficiently large). Since 1n ∈ L,

it follows from the correctness of M that Kt(M(1n)) ≤
√
m with probability ≥ 2/3. And thus

Kt(C(R)) ≤
√
m with probability ≥ 2/3. Intuitively, this says that with probability ≥ 2/3 C(R) will

have very small support (of size ≤ 2
√
m) and therefore it must have small entropy. Let us proceed to

a formal proof. Let flag be a binary random variable jointly distributed with R such that flag = low
if Kt(C(R)) ≤

√
m, and otherwise flag = high. Note that H(C(R) | flag = low) ≤

√
m + 1 since

conditioned on flag = low, C(R) is a distribution over strings with Kt-complexity at most
√
m; by

a standard counting argument, it follows that the support of C(R) is at most 2
√
m+1 and thus has

entropy at most 2
√
m+1. It follows that

H(C(R)) ≤ H(C(R), f lag) = H(flag) +H(C(R) | flag)
= H(flag) +H(C(R) | flag = low) Pr[flag = low]

+H(C(R) | flag = high) Pr[flag = high]

≤ 1 +H(C(R) | flag = low) + 1/3 ·H(C(R) | flag = high)

≤ 1 +
√
m+ 1 +m/3

≤ k − 1.

We turn to proving that if 1n ̸∈ L, then H(C(R)) ≥ k (when n is sufficiently large). Since
1n ̸∈ L, it follows from the correctness of M such that K(M(1n)) ≥ 2

3m with probability at least
2/3. Thus, K(C(R)) ≥ 2

3m with probability at least 2/3. Notice that since C is of very small
description length, if any string y is of high K-complexity, the probability that C(R) outputs y will
be tiny. If this holds for a 2/3 fraction of output of C(R), then we can conclude that C(R) has high
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entropy. We next continue to the formal proof. We claim that for any y ∈ {0, 1}m, if K(y) ≥ 2
3m,

then Pr[C(R) = y] ≤ 2−2m/3+O(logm). If this claim holds, it follows that

H(C(R)) =
∑

y∈C(R)

Pr[C(R) = y] log
1

Pr[C(R) = y]

≥
∑

y∈C(R),K(y)≥2m/3

Pr[C(R) = y] log
1

Pr[C(R) = y]

≥ 2

3
· (2m/3−O(logm))

≥ 4

9
m−O(logm) ≥ k.

Note that the claim follows from the so-called “Coding Theorem”. For completeness, we here sketch
its proof. Assume for contradiction that there exists some y ∈ {0, 1}m, k(y) ≥ 2

3m but Pr[C(R) =
y] ≥ 2−2m/3+O(logm). Consider the set V : {z ∈ C(R) : Pr[C(R) = z] ≥ 2−2m/3+O(logm)}. It follows
that y ∈ V and V contains at most 22m/3−O(logm) strings. Therefore, y can be produced by a program
with the integer n and the code of M (from which it can compute the circuit C), and the index of y
in V . And we conclude that K(y) ≤ O(log n) + 2m/3−O(logm) < 2m/3 which is a contradiction.

By the above two arguments, we have that the tally language L reduces to the complement of
the entropy approximation problem, and thus L ∈ AM ∩ coAM = NP ∩ coNP (by our assumption
that AM = NP).

4 Weakly Black-box Reduction from Gap∞MKtP to HSG

We turn to briefly reviewing the ideas behind [Hir18] in which he showed that there exists a (weakly
black-box) worst-case to average-case reduction for the problem of approximating Kt-complexity of
strings. We will show that the same ideas enable us to also show that there exists a weakly black-box
reduction from Gap∞MKtP to avoiding HSGs.

Theorem 4.1 ([Hir18]). For any polynomial t(n) ≥ n, there exist a HSG H : {0, 1}m/2 → {0, 1}m
and a parametric-honest non-adaptive weakly black-box reduction R from Gap∞MKtP to avoiding H.

Proof Sketch. We will consider a HSG H defined as follows. For any m ∈ N, H picks a random
program of length ≤ m/2, runs the program for poly(t(m)) steps, and finally H outputs whatever
the program outputs. H simply aborts (or outputs an arbitrary m-bit string) if the program does
not halt within poly(t(m)) steps or it outputs a string that is not of length m. H is also referred to
as the universal hitting set generator. We will show that there exists a weakly black-box reduction
from Gap∞MKtP to avoiding H.

Our reduction, R, on input a string x ∈ {0, 1}n, needs to decide whether Kt(x) ≤
√
n or K(x) ≥

2n/3 given an oracle O that avoidsH. The construction of R relies on the Nisan-Wigderson generator
and a good error correcting code, and R proceeds as follows. R first computes x′ ∈ {0, 1}poly(n), the
error correcting code of x, and then uses x′ as the truth table of a hard function to instantiate
the Nisan-Wigderson generator NWx′

: {0, 1}O(logn) → {0, 1}O(
√
n). Finally, R checks whether the

oracle O distinguishes between the output of NWx′
and UO(

√
n) with advantage at least 1/6. Let

m = O(
√
n) be the output length of NWx′

. Notice that R is parametric-honest since it only makes
queries to O on strings of length m, R is also non-adaptive since the queries R makes to O only
depend on the input x, and also notice that R runs in polynomial time.
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To show that R is indeed a weakly black-box reduction, we need to show that R decides
Gap∞MKtP if the oracle O avoids H and O can be implemented by a machine of length ≤ 2m.
We first show that if Kt(x) ≤

√
n, then O will be guaranteed to distinguish between NWx′

and the
uniform distribution. Since Kt(x) ≤

√
n, there exists a program of length ≤

√
n that generates

x within time t(n). Notice that the Nisan-Wigderson generator and the error correcting code can
be implemented using a program with running time poly(n) and description length O(log n), and
the seed of the NW generator is also of length O(log n). Thus, each output string of NWx′

can be
produced by a program of length ≤

√
n+O(log n) ≤ m/2 within time t(n)+poly(n) ∈ poly(t(m)). It

follows that the output of NWx′
will be contained in the range of H(Um/2). Since O avoids H, O will

output 1 with probability at least 1/2 on input a uniform random string, and it will always output 0
on the output of H (and thus always output 0 on the output of NWx′

). Therefore, we conclude that
O will distinguish between NWx′

and the uniform distribution.
It remains to show that if K(x) ≥ 2n/3, O can never distinguish between NWx′

and the uniform
distribution. Roughly speaking, this claim follows from the security of NW generator (and also
the correctness of the error correcting code), and its proof heavily relies on the fact that O has a
relatively small description length. Assume for contradiction that O distinguishes between NWx′

and the uniform distribution. It follows from the reconstruction property of the NW generator that
we can approximately compute the string x′ (with accuracy ≥ 1/2 + O(1/m)) given the oracle O
and an advice string of length, e.g., ≤ m

√
m. Then, we can use the decoding algorithm for the error

correcting code to compute the string x exactly with another advice string of length ≤ O(log n)
(since we will need the error correcting code to be list-decodable, and the advice string in this step
is to specify which string in the list the string x will be). Taken together, we can reconstruct x with
the oracle O (which can be implemented using 2m bits) and m

√
m + O(logm) advice bits, which

contradicts to the assumption that K(x) ≥ 2n/3.

5 Auxiliary-input OWFs from Reductions to HSGs

We will show that if there exists a (length-increasing) weakly black-box reduction from some promise
problem Π to avoiding a HSG H, then we can obtain an auxiliary-input OWF assuming that the
problem Π is worst-case hard. This proof builds on the ideas in [GT00, Nan21, Hir23].

Theorem 5.1. For any promise problem Π, any HSG H : {0, 1}m/2 → {0, 1}m, assume that there
exists a length-increasing non-adaptive weakly black-box reduction from Π to avoiding H and Π ̸∈
prBPP. Then, there exists an auxiliary-input OWF.

We highlight here that one may wonder if we can obtain auxiliary-input OWF from worst-
case hardness of Gap∞MKtP by combining the above theorem together with the weakly black-box
reduction from Gap∞MKtP to HSG we constructed in Section 4. Unfortunately, the answer is no.
The reason for this is that the reduction we obtained in Section 4 (which on input of length n makes
queries on strings of length roughly O(

√
n)) is not length-increasing, whereas to apply the above

theorem, we need a weakly black-box reduction that is length-increasing.
It is instructive to recall that Impagliazzo and Levin [IL90] showed that approximate counting

is possible assuming that there is no OWF. In more detail, they showed that assuming no OWF,
for randomized machine M , for any string x, we can approximately count how many random tapes
r there are that will lead M(1n) to output the string x. We will need the auxiliary-input variant
of [IL90].

Lemma 5.1 (Auxiliary-input approximate counter [IL90]). Assume that there is no auxiliary-input
OWF. For every efficiently samplable family of distributions {Qx}x∈{0,1}∗, any polynomial p(n), there
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exists a PPT machine A such that for all x ∈ {0, 1}∗, n = |x|,

Pr[q ← Qx : (1− 1/p(n))Qx(q) ≤ A(x, q) ≤ (1 + 1/p(n))Qx(q)] ≥ 1− 1/p(n)

where Qx(q) denotes Pr[Qx = q].

We are now ready to present a proof for Theorem 5.1.
Proof: (of Theorem 5.1) Let t be the running time of the reduction R.

We consider the efficiently samplable family of distributions {Qx}x∈{0,1}∗ defined as the follows.
Given x ∈ {0, 1}∗, we sample a random tape r for the reduction R(x), and we let q1, . . . , qt(|x|) be
the strings such that the i-the query that R(x) (with the random tape r) makes to the oracle is on
qi. (Note that we are able to extract q1, . . . , qt(|x|) since R is a non-adaptive reduction.) Let q be a
random element in {q1, . . . , qt(|x|)}, and we simply let Qx be the distribution of q (given a uniformly
distributed random tape r).

For any x ∈ {0, 1}∗, let n = |x|. Let m be the length of the oracle queries that R(x) makes.
Since R is length-increasing, it holds that m ≥ n. We start by constructing an oracle O1 such that
O1 avoids the HSG H and O1 can be implemented by an (inefficient) program of length at most
2n ≤ 2m. If so, we can conclude that RO1(x) will output Π(x) with probability at least 2/3 due to
the correctness of R. Although it is assumed that Π ̸∈ prBPP, there is no contradiction yet since the
implementation of O1 might be inefficient. Notice that we are going to allow some of entries in O1

to be set to ∗, meaning that O1 is undefined on those locations. We say that such an oracle avoids
the HSG H if no matter how we assign each ∗ to 0 or 1, it will still avoid H.

Let θ = 2t(n)3. We say that a string q ∈ {0, 1}m is “light” (with respect to Qx) if

Qx(q) ≤ θ · 2−m

And we say that q is “heavy” if
Qx(q) ≥ 4θ · 2−m

where Qx(q) is defined to be Pr[Qx = q]. We turn to defining the oracle O1. For every q ∈ {0, 1}m,
we define

O1(q) =


1 if q is light and q ̸∈ Im(H)
0 if q is heavy or q ∈ Im(H)
∗ otherwise

where Im(H) denote the range (or the set of image) of the HSGH. Note that O1 can be implemented
by an inefficient machine that has the instance x, the code of R and H hardcoded in its code. Thus,
the description length of O1 is at most n+O(log n) ≤ 2n.

It remains to show that O1 avoids the HSG H. It follows from the definition of O1 that O1 will
output 0 on every string ∈ Im(H). To show that O1 will output 1 with probability at least 1/2 on
input Um, we notice that O1(q) won’t output 1 if q ∈ Im(H) or q is not light. The probability that

q ∈ Im(H) is at most 2m/2

2m ≤ 2−m/2 since the HSG H has seed length only m/2. The probability
that a random q ∈ {0, 1}m is not light is at most 1

θ since there are at most 1
θ2−m strings that are

not light. Combing the above two arguments, and by a Union Bound, we conclude that O1 does not
output 1 with probability at most

2−m/2 +
1

θ
≤ 1

2

which concludes that O1 avoids H.
Next, we are going to construct another oracle O2 such that R(x) can barely distinguish between

O1 and O2 (with probability ≤ 1
t(n)) and O2 can be efficiently implemented given x. If this is the

case, since recall that RO1(x) will output Π(x) with probability at least 2/3, it follows that RO2(x)
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will output Π(x) with probability at least 2/3− 1
t(n) , which (together with the fact that RO2(x) can

be efficiently computed) concludes that Π ∈ prBPP, a contradiction.
We proceed to the construction of O2. Since there is no auxiliary-input OWF, by Lemma 5.1,

there exists a PPT machine A such that for every x ∈ {0, 1}∗, n = |x|, with probability at least
1− 1

θ(n) over q ← Qx, we have that

(1− 1

θ(n)
)Qx(q) ≤ A(x, q) ≤ (1 +

1

θ(n)
)Qx(q)

We will use the machine A to define O2. For every q ∈ {0, 1}m, we define

O2(q) =

{
1 if A(x, q) ≤ 2θ · 2−m

0 if A(x, q) > 2θ · 2−m

It follows from the definition of O2 that it can be implemented by an efficient machine given the
instance x. We turn to proving that R(x) can distinguish between O1 and O2 with probability at
most 1

t(n) . For each query q, R(x) will distinguish between O1 and O2 if the approximate counter A

fails on q (which happens with probability ≤ t(n) · 1θ ), or q is light but q ∈ Im(H), which happens
with probability at most

(t(n) · θ 1

2m
) · 2m/2 ≤ 1

θ

By a union bound, the probability that there exists some query that makes R(x) distinguishes
between O1 and O2 is at most

t(n) · (t(n) · 1
θ
+

1

θ
) ≤ 1

t(n)

which concludes the proof.

6 Auxiliary-input OWF from NP-hardness of Gap∞MKtP

Finally, we put everything all together and present a proof sketch for the main theorem of this report.
We will show that assuming the worst-case hardness of NP and the NP-hardness of Gap∞MKtP, there
exists an auxiliary-input OWF.

Theorem 6.1. Assume that NP ̸∈ BPP and Gap∞MKtP is NP-hard for some polynomial t (via a
parametric-honest reduction). Then, there exists an auxiliary-input OWF.

Proof Sketch We first give a potential approach of proving this theorem that does not really work.
Since NP ̸∈ BPP and Gap∞MKtP is NP-hard, it follows that Gap∞MKtP ̸∈ prBPP. By Theorem 4.1,
there exists a weakly black-box reduction from Gap∞MKtP to a HSG H. Given this weakly black-box
reduction, together with the fact that Gap∞MKtP ̸∈ prBPP, by Theorem 5.1, it seems that we would
get an auxiliary-input OWF. As discussed in Section 5, this approach doesn’t work since the weakly
black-box reduction we obtained from Theorem 4.1 is not length-increasing whereas Theorem 5.1
requires a length-increasing weakly black-box reduction.

However, the good news is that we can get around this issue by leveraging from the fact that most
NP-complete problems are paddable. For example, given a SAT formula ϕ, it is easy to construct
another SAT formula ϕ′ that is much “longer” than ϕ while preserving its satisfiability. This enables
us to obtain a length-increasing reduction.

Consider the reduction from SAT to the HSG H defined as follows. Given a SAT formula ϕ
of length n, we pad ϕ to get a sufficiently long formula ϕ′ of length poly(n). And then we run
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the parametric-honest reduction from SAT to Gap∞MKtP to get a Gap∞MKtP instance x of length
O(n2). Finally, we run the weakly black-box reduction in Theorem 4.1 from Gap∞MKtP to the HSG
H on the instance x. It follows that the reduction will query the oracle for avoiding H on strings of
length Ω(

√
|x|) ≥ n and the reduction is length-increasing with respect to the SAT formula ϕ. Thus,

the reduction
ϕ→ ϕ′ → x→ H

is a length-increasing weakly black-box reduction from SAT to avoiding H. And we are now able to
apply Theorem 5.1 to obtain an auxiliary-input OWF. This completes our proof.
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