
CS 6810 Project Report: on CSPs

Group members: Ellie Fassman, Jiho Cha, Yunya Zhao

December 16, 2023

1 Introduction

CSPs, or Constraint Satisfaction Problems, are an archetype of problems where we we wish to
assign variables values from a finite set (called a domain) subject to a set of constraints on those
variables. The objective of these problems is to maximize the total number of constraints satisfied.
Each constraint locally checks the assignment of a subset of variables to see if it is satisfied or not.

The main challenge associated with CSPs is developing algorithms that can efficiently determine
the maximum fraction of constraints that can be satisfied over all possible assignments of variables,
subject to certain resources such as time, space, etc. The availability of these resources, along with
the nature of the constraints present in the problem, affect how close we can get to the optimal
number of constraints.

Example 1.1. Formulation of Sudoku as a CSP (informal)

Sudoku is a type of puzzle seen all throughout pop culture, and is perhaps the epitome of
constraint satisfaction problems. There are 81 tiles on a 9 by 9 grid that must be labelled with
a number from 1 through 9, with the constraint that no row, column, or 3 by 3 box contains no
duplicate numbers.

Of course, this is a rather toy example in the grand scope of CSPs. In general, the power of
CSPs can capture a host of many natural and well-studied optimization problems, such as SAT
(and many of its variants), Max-Cut, Max q-colorability, etc. On the other hand, many other
optimization problems can not be formulated by CSPs, such as maximum flow in a network. One
might therefore ask what the value is in studying CSPs, if they only appear to capture a subset
of the many natural optimization problems that computer scientists study. One answer to this
question (and the answer we will be focusing on most in this report) is the fact that constraint
satisfaction problems have an inherent structure associated to them, which enables clear boundaries
between different classes of problems within the realm of CSPs.

As a motivating example, consider the existence of NP-intermediate languages. These languages
blur the line between P and NP, but the question as to whether or not any “natural” problems fall
into this class is still open. As we will discuss later in this report, the rigid configuration underlying
CSPs do not permit such intermediate languages, creating an indisputable dichotomy between P
and NP. The power of CSPs also extends past the well-known P vs. NP question, as it also gives
rise to many other dichotomies. CSPs are a tool that allow computer scientists to study many
open questions in complexity theory through the lens of a large set of structured and “natural”
problems.

1

2 Notation and Definitions

We will now formally define CSPs. Note that the following definition is just one formulation of
CSPs. Because of the general structure of CSPs, there is not one canonical definition for CSPs,
and many sources use different notation and mathematical objects to express them. However, we
will do our best in this report to standardize our notation to the definition provided below.

Definition 2.1. Formally, a CSP is a tuple (V,Ω, C), where:

• V is the set of variables

• Ω, the domain, is the set of values that we can assign to v ∈ V

– Typically Ω is the set Zq = {0, 1, ..., q − 1}, and we are often in the case where q = 2

– In general, Ω must be a finite set.

• A constraint c ∈ C is a pair f : Ωr → {0, 1} and a tuple (vi1 , ...vir) of r distinct variables in
V .

– A constraint is satisfied if f(vi1 , ..., vir) = 0, and unsatisfied otherwise.

– We let F be the set of all such available functions “f”s.

– Intuitively, F determines the particular problem (i.e. MAX-CUT or 3-SAT), as it con-
trols what sorts of constraints we are allowed to use, and C determines the instance of
that problem.

Definition 2.2. We say that A : V → Ω is an assignment of variables.

• Given an instance C of a CSP, valC(A) is the fraction of constraints that A satisfies.

• valC is the maximum value taken by valC(A) over all possible assignments.

Example 2.3. Formulation of Sudoku as a CSP (formal)

In this example, we set V to be a set of 81 variables. To better exemplify the connection to
Sudoku, we label the variables as v1,1, v1,2, ..., v1,9, v2,1, ..., v9,9. Ω is the set [9]. The set F contains
only one function - f : Ω9 → {0, 1} which returns 1 if and only if all 9 of its arguments are different.
We then make 27 constraints using the function f :

• (f, vi,1, ..., vi,9) ∀i ∈ [9]

• (f, v1,i, ..., v9,i) ∀i ∈ [9]

• (f, v3i+1,3j+1, v3i+1,3j+2, v3i+1,3j+3, v3i+2,3j+1, v3i+2,3j+2, v3i+2,3j+3, v3i+3,3j+1, v3i+3,3j+2, v3i+3,3j+3)
∀i, j ∈ {0, 1, 2}

The first set of 9 constraints formalize the idea that no two numbers on a row share the same
value, the second set of 9 constraints formalize the idea that no two numbers on a column share
the same value, and the third set of 9 constraints formalize the idea that no two numbers in a 3x3
box share the same value.

Example 2.4. Formulation of 3-SAT as a CSP

Consider the following formulation:

2

• V = {x1, ..., xn}

• Ω = {0, 1}

• F = {ternary OR with literals}

Note that there are 8 functions in total in F , since for each of the 3 literals, we can choose
to negate it or not. Let f1 ∈ F be defined as f1(x, y, z) = x ∨ y ∨ z, and f2 ∈ F be defined as
f2(x, y, z) = x ∨ y ∨ z.

Then the CSP (V = {x1, ..., x5},Ω, C = {(f1, (x1, x3, x4)), (f2, (x2, x4, x5))} corresponds to the
Boolean expression Φ = (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5).

3 Solving CSPs (Traditional Approaches)

Throughout the next sections we will be talking about solving CSPs. By solving CSPs, we mean
finding an assignment of variables such that every constraint is satisfied. These traditional ap-
proaches below are from [Liu98].

3.1 Generate and test

We can first think about the most basic approach, the generate and test method. This is where each
possible assignment of variables is generated and then tested to see if the constraints are satisfied.
When trying to find the whole solution set (or in the worst case), the time complexity of this is
exponential in the number of variables.

We then can ask if adding randomization helps solve this problem more efficiently. We can create
randomized generate and test algorithms that select assignments to test at random (based on some
given distribution). This is similar to randomized hill climbing where the distribution can be biased
to draw assignments more alike the recently tested assignments. However, randomized approaches
cannot prove S = ∅ since they do not necessarily test all possible assignments.

3.2 Tree search

We can approach solving CSPs using a tree search with backtracking. So in this approach, all
variables are instantiated one at a time. Upon instantiating, a value is assigned to the variable
(chosen from its domain), then we check that constraint are satisfied (otherwise assign a new value).
If no value can be assigned (we exhausted all possible options and every assignment violated a
constraint), backtrack. In backtracking, the most recently assigned variable changes assignments
(if a new assignment exists). Then the algorithm may continue forward with assignments or it may
backtrack further (if no values to newly assign are possible). If/when all variables are assigned a
value, then we’ve found a solution. If all combinations of assignments have been exhausted and the
constraints are not satisfied, there’s no solution.

3.3 Constraint propagation

The goal of constraint propagation is to reformulate the CSP into an easier, equivalent form. We can
do this by minimizing scope of domain for each variable (without eliminating possible solutions).
Each of the constraints are updated after the removal of values from the domain (propagation).
The goals of constraint propagation are usually either node consistency or arc consistency.

3

• Node consistency: For all v in the set of variables, throughout v’s domain, all univariate
constraints involving v are satisfied.

– If v is not node consistent, there is a value in the domain of v that upon v being assigned
this value will result in failure of satisfaction.

∗ This value can be removed from v’s domain since it will never be found in the
solution set.

• Arc consistency: (bivariate constraints on pairs of variables) For all pairs of variables v, v’,
(v, v′) is arc consistent if for all values in the domain of v, say value i, there exists a value in
the domain of v’, say value i’ such that v = i, v′ = i′ does not violate any bivariate constraints
involving v and v’.

– Note that (v, v′) being arc consistent ̸= (v′, v) being arc consistent

– Upon discovery of inconsistencies for pair (v, v′), we can delete the domain values i which
cause this inconsistency since i will never be in the solution set.

The solution set for N variate CSP will be found by attaining N consistency. However, this is not
usually used to find the solutions (computationally expensive, more expensive than backtracking).
After finding arc consistency, the way to find the solution set is combining constraint propagation
and backtracking.

3.4 Combination

We can solve CSPs using backtracking search and constraint propagation. Backtracking will find a
solution if the solution set is nonempty, however this is an inefficient method since we are frequently
checking the same constraints with only one variable assignment changed. If there are bivariate
constraints, there are many unnecessary re-checks of constraints.Constraint propagation will sim-
plify the CSP, but is not guaranteed to find the solution set or even a solution.

We can embed a constraint propagation algorithm inside a backtracking search algorithm. Within
the search tree created by the backtracking algorithm, every visited node has a constraint propa-
gation algorithm run on it. This removes inconsistent values from respective domains while newly
instantiating variables. If a variable’s domain becomes empty, prune this node from the search
tree (detecting ”dead ends” early). Common CSP algorithms that employ this combination are
forward checking (FC) and maintaining arc consistency (MAC). FC has been traditionally used,
but recently there has been evidence that MAC is more efficient for complex CSPs. The differences
between the two lie in the amount of constraint propagation carried out. in FC, at each node,
partial arc consistency is attained, whereas in MAC, at each node, full arc consistency is attained.
There are some key tradeoffs when designing an algorithm to solve a CSP. We must ask how
much constraint propagation needs to be carried out at each node? More constraint propagation
means smaller tree size, but this is more computationally heavy (may not be necessary). There
is a tradeoff between the number of nodes visited in the search tree and the work done at each node.

All of these previous approaches are not necessarily efficient for very large CSPs (which contain a lot
of variables). We will see that we can use sketching and streaming algorithms to find approximate
solution sets for CSPs. First we will discuss what streaming and sketching algorithms are.

4

4 Streaming algorithms

Streaming algorithms are designed to process data as it becomes available and cannot be stored
in its entirety. Streaming algorithms are useful when the data comes in as a data stream, rather
than being fully available before processing. There are two main classes of streaming algorithms:
counter-based algorithms and sketch algorithms.

4.1 Counter-based algorithms

The basis of these types of algorithms is to track a subset of items from the input and monitor their
counts. Upon a new piece of data arriving, we must decide whether to store it or not. There is also
the decision of what count to associate with each piece of data. We can think of a few different
problem settings:

4.1.1 Majority problem

We can state a version of the majority problem as such: Given a large data stream of n values in
some set alphabet with the guarantee that one value occurs more than n

2 times, output this value.
We can also think about each piece of data as a vote for one element in the alphabet, and we are
trying to output the majority vote. The majority algorithm can be designed as such:

Algorithm 1: Finding the majority element of a data stream. From [MM17].

def majority(datastream):
held = next(datastream)
counter = 1
for item in stream:

if item == held:
counter += 1

elif counter == 0:
held = item
counter = 1

else:
counter -= 1

return held

Although this algorithm is very simple, it’s useful to think about its correctness. If m is the
majority value that we want to return, since m occurs more than n

2 times, each decrement pairs
up two different items and cancels them out. Then because m will appear more than n

2 times not
all of its occurrences can be canceled out. The algorithm also only passes through the data once.
If the alphabet size is s and we say the size of the data stream is n pieces of data, we see that this
algorithm uses O(log(n) + log(s)) space.

4.1.2 Frequency problem

We can state the frequency problem as such: find all values in a sequence of data whose frequency
exceeds 1

k of the total amount of data values. The frequency problem generalizes the majority
problem and we can modify the majority algorithm to solve the frequency problem. For each new
data value we increment the counter if the value is already stored. If < k values stored, then store
the new value with the counter set to 1. Otherwise we decrement all of the counters and if any
counter hits 0, delete the value that corresponds with this counter. The frequency algorithm can

5

be designed as such:

Algorithm 2: Finding the frequent elements of a data stream. From [CH09].

def frequency(k, datastream):
counter = 1
T = NULL
while(datastream != NULL):

val = next(datastream)
if val ∈ T:
counterval += 1

elif |T | < k − 1:
T = T ∪ val
counterval = 1

else:
for all val’ ∈ T:
counterval′ -= 1
if counterval′ == 0:
T = T\val′

return T

4.1.3 Other counting problems

We can design algorithms for other various data streaming problems such as:

• Lossy Counting Algorithm: find the values in a data stream that exceed a frequency given
by a parameterized threshold.

• SpaceSaving Algorithm: very similar to the majority problem, but finding all values that occur
over n

2 times in the data stream. This algorithm requires less resources than the majority
algorithm described above.

4.1.4 Summary

As a quick aside, there can be arrival-only and arrival-departure data streams.

• Arrival-only streams: data values arrive sequentially. This can model, for example, packets
on a network.

• Arrival-departure streams: data values can both arrive and depart sequentially. That is, data
values can be nullified later in the stream. This can model fluctuating quantities.

– For example: (a, 4), (b,1), (a, -1) means the final state is (a, 3), (b, 1).

Counter algorithms are very efficient for arrival-only data streams. They use O(1ϵ) space and ensure
ϵ ∗ n accuracy (an ϵ-approximation).

4.2 Sketch algorithms

Sketching algorithms are a class of algorithms that operate on a large data set which has a much
smaller summary. Sketching algorithms are powerful in that they compress data in order to answer
queries efficiently without using a lot of space. That is, for an input of n data items, each data item

6

is mapped by hash functions into a much smaller sketch vector that records summary information
like frequency. The sketch vector does not actually store data items, but rather summary statistics
(like frequency distribution, range, and inner product).

4.2.1 Some sketch algorithms

Other sketching algorithms include (from [MM17]):

• Count Min Sketch, which is used for estimating the frequencies of elements in a data stream.
It uses hash functions to map elements to a matrix of counters.

• Bloom Filter, which is used for testing whether a given element is a member of a set.

• HyperLogLog, which is used for estimating the cardinality of a multiset.

• MinHash, which is used for estimating Jaccard similarity between sets.

• Random Projection, which is used dimensionality reduction (projecting high-dimensional data
into lower-dimensional space while preserving specific properties).

• Count Sketch, which is similar to Count Min Sketch in that it is used for approximate counting
in data streams.

4.2.2 Count Min Sketch structure

We will go into the specifics of the Count Min Sketch algorithm. The Count Min Sketch can be
implemented with a two-dimensional d × w array of counters and d independent hash functions.
d = log(1δ) and w = 2

ϵ . For each incoming data item i with value vi counters are updated based
on the hash values of the new data item. When we want to find some sort of summary value on
vi, we return the minimum of the counters involving the value vi. Collisions will happen between
some vi’s and vj ’s but the amount of collisions is bounded based on the has functions used. The
minimum value of the counters is returned since we want to return the estimate that has been
involved in the smallest amount of collisions. Thus the collisions have a bounded impact on the
quality of the summary approximations of the data stream.

4.3 Summary

We will compare counter-based versus sketching approaches:

4.3.1 Counter-based algorithms

The purpose of counter-based algorithms is counting occurrences or frequencies of elements in a
streamed dataset. These algorithms typically use integer valued counters and aim to provide exact
counts.

4.3.2 Sketch algorithms

The purpose of sketch algorithms is provide approximate summaries of large streamed datasets,
using much less memory than storing the whole dataset and then computing summary statistics.
Sketch algorithms typically use sketches vectors to store information about the dataset. These
sketch vectors are far more compressed than the overall dataset. There is always a tradeoff between
accuracy and efficiency (both space and time efficiency).

7

4.3.3 Key differences between these approaches

• Counter-based approaches typically require more memory as compared to sketching ap-
proaches.

• Sketching algorithms provide summaries of the data stream, whereas counter algorithms
provide frequencies of specific values.

• Counter algorithms prioritize accuracy while sketching algorithms prioritize efficiency.

Counter-based algorithms are preferred when frequencies of data values are needed and sufficient
memory is available. Sketch algorithms are preferred summary statistics are sufficient and there
are limited memory resources.

5 Streaming and Sketching Algorithms for Boolean CSPs

5.1 What is an approximation algorithm for a CSP?

An approximation algorithm is a randomized polytime algorithm that finds a solution that is within
some approximation threshold of the optimal solution. The optimal solution can be measured on
different objectives based on the CSP. Some objectives include:

• Maximize the number of satisfied constraints. An α-approximation will find a solution that
satisfies ≥ α ∗OPT constraints.

• Given a (1 − ϵ)-satisfiable CSP, find a solution that satisfies (1 − f(ϵ)) fraction of the con-
straints.

• Minimize the number of unsatisfied constraints.

We can summarize some of the known results for Boolean CSPs using the objective to maximize
the number of constraints (this table is from [MM17]).

8

5.2 Streaming and sketching algorithms for CSPs

Streaming algorithms for CSPs are made to process data in a streaming fashion, so make decisions
based on a sequence of data elements that arrive one at a time. This is useful when dealing with
large datasets (e.g. those with a large amount of literals). Streaming algorithms provide a way
to approximately solve CSPs with limited memory and processing capabilities. Some approaches
include (from [Sud22]):

• Randomization: Randomized streaming algorithms can be used to make random choices to
quickly explore the solution space without exhaustively searching all possibilities.

• Using sketching techniques: Sketching techniques involve maintaining a compressed summary
(sketch) of the data stream. Sketches can be used to estimate different key properties of the
data. In CSPs we can summarize the constraints and variables in the problem.

• Memory efficient data structures: Data structures like bloom filters, count min sketches, and
hyperloglog help the processing of constraints in a way that is memory efficient.

Sketching algorithms can be thought of as a restriction of streaming algorithms. In CSP solving
the most common algorithms used are linear-sketching algorithms. The sketch of a vector v can
be projected down to some low-dimensional subspace. This compresses large N dimensional inputs
into small s dimensional sketches that end up giving significant information about the original
input. Some ways that linear sketching can be applied to CSPs include:

• Count Min sketch is a probabilistic data structure used for estimating the frequency of el-
ements in a stream. In the context of CSPs, it can be used to estimate the frequency of
different variable assignments or constraint satisfaction patterns.

• We can use random projections to represent constraints in a lower-dimensional space while
preserving properties of the original constraints, which reduces the dimensionality of the CSP.

• We can apply the Johnson-Lindenstrauss transform to embed the variables of the CSP into
a lower-dimensional space while approximately preserving the pairwise distances between
variables.

• For CSPs that involve linear equations, we can use sketching techniques to maintain a compact
representation of the coefficient matrix.

• Hyperloglog is usually used for estimating the cardinality of a multiset. In CSPs we can use
it to estimate the number of distinct variable assignments.

• We can represent constraints sparsely using feature hashing.

• If the CSP can be represented as a graph, we can apply graph sketching techniques to represent
the graph in a compressed form.

Overall we can use streaming and sketching to reduce the computational load of solving large CSPs.
The goal with the techniques above is to find a balance between computational efficiency while still
having an informative representation of the CSP. The key tradeoff is between the amount you want
to compress the CSP and how close of an approximation you want to get. Obviously if you do not
compress the CSP at all you can use a traditional approach to solving a CSP in order to find an
exact solution, but in cases where this is infeasible due to computation/memory requirements, you
may settle for an approximate solution that is far easier to compute.

9

6 Dichotomy in Boolean CSPs

6.1 Background

Boolean CSPs are known to exhibit a dichotomy due to the famous Schaefer’s Dichotomy Theorem
[Sch78] from the 1970s. Schaefer proved that the exact satisfiability version of any Boolean CSP is
either in P or is NP-complete. The dichotomy is proven by explicitly giving six classes of Boolean
CSPs that have polynomial time algorithms, and that anything outside these classes will be NP-
complete. We state the theorem here but omit the proof.

Theorem 6.1 (Schaefer’s Dichotomy Theorem). A finite set Γ of relations over the Boolean domain
defines a polynomial time computable Boolean CSP if one of the following holds,

• all relations, except those that are constantly false, are true on the all-1 assignment
• all relations, except those that are constantly true, are false on the all-0 assignment
• all relations can be equivalently written as 2-CNF
• all relations can be equivalently written as CNF with at most one negated literal in each clause
• all relations can be equivalently written as CNF with at most one non-negated literal in each
clause.

• all relations can be equivalently written as a conjunction of affine formulae

otherwise, the Boolean CSP over Γ is NP-complete.

It is not hard to see that for each of the listed class has polynomial time algorithms. The main
technical result of Schaefer’s dichotomy is to show that all other Boolean CSPs are reducible to
3SAT. Indeed, this is the general approach for showing dichotomies: give tractable algorithms for
the positive class(es), and establish intractability arguments for the negative class(es) based on
hardness theorems/conjectures, complete problems, and/or existing lower bounds for other classes
of problems.

Departing from Schaefer’s dichotomy, we ask problems leading different directions: (1) does
any finite domain CSP, i.e. not necessarily Boolean, exhibit similar dichotomy in general? (2)
instead of exact satisfiability, are there finite classification results regarding approximability of the
maximization version of CSPs? (3) besides dichotomy with respect to polynomial time, can we
characterize the approximability of CSPs with respect to space in the context of streaming and
sketching algorithms?

There have been lines of work along each of the above directions. Feder and Vardi [FV99]
conjectured that the exact satisfiability of any finite domain CSP is either in P or NP-complete.
The ultimate proof [Bul17] [Zhu17] came from the universal algebra community in 2017, after some
20 years of hard work since the conjecture. In this report, however, we will not discuss this direction
any further than noting that modern attempts at this problem have been mostly algebraic, pulling
heavy mathematical resources beyond the interest of this TCS project.

As mentioned in direction (2) and (3), it is natural to turn our attention to approximation algo-
rithms when exact satisfiability is too good to hope for or when approximation suffices in practice.
It turns out CSPs again exhibit some “near-dichotomy” (with ε error in the appropriate sense).
On the time complexity front, in a seminal work [Rag08], Raghavendra gave a characterization
of the polynomial time approximability of the maximization version of every finite-domain CSP
based on the Unique Games Conjecture— if UGC is true, then the best approximation ratio for
every CSP is given by a semidefinite programming. On the space complexity front, [CGSV22] gave
a complete characterization of the approximability of every finite-domain CSP in the context of
linear sketching algorithms.

10

Leading to these results, researchers often started by considering the less general, but equally—
if not more— insightful Boolean versions of these problems. Austrin in [Aus07b] showed tight
Unique Games hardness results for every 2-CSP over the Boolean domain under certain additional
conjecture. In an earlier work [CGSV21] shortly before [CGSV22], the authors showed a complete
characterization for approximating Boolean CSPs with linear sketches.

In the rest of this report, we will discuss these “near-dichotomy” characterizations of Boolean
CSPs in greater detail— to do this, we redefine or formalize some notions introduced earlier and
add new definitions to better suit the purpose of analysis in this section.

6.2 Preliminaries

Definition 6.2 (Max-CSP). An instance of Max-CSP(F) over a family of functions F on n vari-
ables with m constraints is given by Ψ = (C1, · · · , Cm), where each Ci is a constraint on X1, · · · , Xn.
A constraint C is given by a pair (f, (j1, · · · , jk)) where f ∈ F and (j1 · · · , jk) is a sequence of
distinct indices in [n]. C is satisfied at an assignment a if f(aj1 , · · · , ajk) = 1.

The value of an instance at an assignment a valΨ(a) is defined to be the fraction of the constraints
that are satisfied. The value of an instanceval is the maximum value over all assignments.

Given an instance, the Max-CSPproblem is to compute or approximate the value.

Definition 6.3 (Max-CUT). Given an undirected graph G = (V,E), the Max-CUTproblem is that
of finding a partition C = (V1, V2) which maximizes the size of the set (V1 × V2) ∩ E. Given a
weight-function w : E → R+, the weighted Max-CUTproblem is that of maximizing the sum of the
cut’s weight ∑

e∈(V1×V2)∩E

w(e)

Definition 6.4 (Max-2SAT). An instance of the Max-2SATproblem is a set of Boolean variables
and a set of disjunctions over two literals each, where a literal is either a variable or its negation.
The problem is to assign the variables so that the number of satisfied literals is maximized. Given
a nonnegative weight function over the set of disjunctions, the weighted Max-2SATproblem is that
of maximizing of the sum of weights of satisfied disjunctions.

There are various notions of approximation in the literature, we present two most common
ones in the context of CSPs. The line of work on UGC-based polynomial time inapproximability
mostly adopts the notion of α-approximation (Definition 6.5), while Chou et al. analyze (γ, β)-
approximation (definition 6.6) in the context of streaming and sketching algorithms.

Definition 6.5 (α-approximation). For α ∈ [0, 1], an α-approximation algorithm A for Max-
CSP(F) is one that for every instance Ψ outputs a value A(Ψ) satisfying α · valΨ ≤ A(Ψ) ≤ valΨ.

Definition 6.6 ((γ, β)-approximation). For 0 ≤ β < γ ≤ 1, an algorithm A solves the (γ, β)-
approximation version of Max-CSP(F) if the following two conditions hold:

1. For every Ψ such that valΨ ≥ γ, A(Ψ) = 1
2. For every Ψ such that valΨ ≤ β, A(Ψ) = 0

We denote the (γ, β)-version of Max-CSPas (γ, β)-Max-CSP(F), it can be thought of as a
“gapped promise problem” where an algorithm solving it needs to distinguish instances where
at least γ fraction of the constraints can be satisfied from instances where at most β fraction of the
constraints can be satisfied.

11

It is worth discussing how the two notions of approximation translate. In short, (γ, β)-Max-
CSP(F) is at least as powerful as the α-approximability of Max-CSP(F). To see this, suppose
we have α-approximation algorithm A, consider (γ, β) where β < αγ, then we can make another
algorithm A′ that outputs 1 if the original A(Ψ) > β and 0 otherwise. We also have the converse
hold in the following sense: if for some α we have that for every γ ∈ [0, 1], the (γ, β)-Max-CSP(F) is
solvable for β = αγ, then for every ε we have that Max-CSP(F) is (α−ε)-approximable1 [CGSV22].

We also formalize the concepts of streaming and sketching algorithms introduced in Section 5 in
the context of CSPs. We use CF ,n to denote the set of all constraints of Max-CSP(f) on n variables
(for simplicity, here F = {f} the singleton). A stream is thus an element of (CF ,n)

∗ and we use λ
to denote the empty stream.

Definition 6.7 (Streaming Algorithm). A space s general streaming algorithm A for Max-CSP(f)
on n variables is given by a (state-evolution) function S : {0, 1}s × CF ,n → {0, 1}s and a (output)
function v : {0, 1}s → [0, 1]. Let S̃ : (CF ,n)

∗ → {0, 1}s given by S̃(λ) = 0s and S̃(σ1, · · · , σm) =
S(S̃(σ1, · · · , σm−1), σm) denote the iterated state-evolution map. Then the output of A on input
σ = (σ1, · · ·σm) is v(S̃(σ)). We think of a randomized streaming algorithm as simply a distribution
on the pairs (S, v).

Definition 6.8 (Sketching Algorithm). A (deterministic) space s streaming algorithm A = (S, v)
is a sketching algorithm if there exists a compression function COMP : (CF ,n)

∗ → {0, 1}s and a
combination function COMB : {0, 1}s × {0, 1}s → {0, 1}s such that the following hold:

• S(z, C) = COMB(z,COMP(C)) for every z ∈ {0, 1}s and C ∈ CF ,n.
• For every pair of streams σ, τ ∈ (CF ,n)

∗, we have

COMB(COMP (σ),COMP(τ)) = COMP(σ ◦ τ)

where σ ◦ τ represents the concatenation of the streams σ and τ . A randomized algorithm
A is a randomized sketching algorithm if it is a distribution over deterministic sketching
algorithms.

A linear sketching algorithm roughly associates with elements of a vector space V and COMB is
simply vector addition in V .

Finally, we introduce the Unique Games Conjecture which sits as the center of polynomial time
α-approximability of CSPs. The proof of [Rag08], as is common in literature, uses a formulation
of the Unique Games Conjecture in terms of a Unique Label Cover problem, but here we give an
equivalent version that is much lighter in notation.

Conjecture 6.9 (Unique Games Conjecture). For any δ > 0, there is a large enough number
p such that: given a set of linear equations of the form xi − xj = cij mod p, it is NP-hard to
distinguish between the following two cases:

1. There is a solution to the system that satisfies (1− δ) fraction of the equations
2. No solution satisfies more than δ fraction of the equations

With these in hand, we are ready to look at time and space “near-dichotomies”.

1One thing we are hiding here is the class C that the algorithms come from. For the above analysis to hold, we
require C to have certain closure properties.

12

6.3 Unique Games Conjecture and Inapproximability of Boolean CSPs

Theorem 6.10 (Goemans-WilliamsonMax-CUTalgorithm [GW95]). There is a randomized (αGW , ε)-
approximation algorithm for Max-CUTwhere ε is any positive number and

αGW = min
0≤θ≤π

2

π

θ

1− cos θ
≈ 0.878567

Theorem 6.11 ([KKMO04]). Assuming Unique Games Conjecture, then for every constant −1 <
ρ < 0 and ε > 0, it is NP-hard to distinguish between instances of Max-CUTthat are at least
(12 −

1
2ρ)-satisfiable from those at most (arccos ρπ +ε)-satisfiable. In particular, choosing ρ = ρ∗ where

ρ∗ = argmin
−1<ρ<0

(arccos ρ)/π
1
2 − 1

2ρ

implies that it is NP-hard to approximate Max-CUTto within any factor greater than the Goemans-
Williamson constant αGW .

Theorem 6.10 and Theorem 6.11 put together tell us that the Unique Games-hardness of Max-
CUTprecisely matches the algorithmic guarantee αGW ≈ 0.878567 of Goemans-Williamson for all
−1 < ρ < ρ∗. Similarly, it was shown in [Aus07a] that the UGC-hardness of Max-2SATmatches the
best known LLZ algorithm [LLZ02] with α = αLLZ ≈ 0.94016. Is this all coincidence?

Unsurprisingly, the answer is no. The breakthrough Goemans-Williamson algorithm for Max-
CUTwas the first use of semidefinite programming (SDP) in the design of approximation
algorithms. As it turns out, hardness results obtained from UGC are deeply connected with the
limitations of SDP. In most cases, the choice of optimal parameters at the heart of the hardness
result are derived by analyzing worst-case scenarios for the semidefinite relaxation of the problem.
In fact, Raghavendra [Rag08] showed that if the UGC is true, then the best approximation ratio
of any finite-domain CSP is given by a certain simple SDP.

6.3.1 Semidefinite Programming Relaxation

Max-CSPis essentially a problem of optimization. A common practice for approximation algorithms
for optimization problems is convex relaxation, including linear programming and semidefinite
programming relaxations. In this section we briefly introduce semidefinite programming through
an example.

Definition 6.12 (Semidefinite program). A semidefinite program is the problem of optimizing a
linear function of a symmetric matrix subject to linear equality constriaints and the constraint that
the matrix be positive semidefintite

We return to the Goemans-Williamson algorithm as an example of how to formulate CSPs like
Max-CUTinto an SDP. Given graph G = (V,E), a cut C partitions the vertices into V1, V2, say we
assign value 1 to every vertex in V1 and value −1 to every vertex in V2, then the Max-CUTproblem
on graph G can be thought of as the following quadratic programming:

maximize
1

4

∑
(i,j)∈E

(xi − xj)
2 =

1

4

∑
(i,j)∈E

x2i + x2j − 2xixj =
1

2

∑
(i,j)∈E

1− xixj

subject to ∀i ∈ V, xi ∈ {−1, 1}

13

We do not hope to solve it efficiently for it’s NP-hard, so we relax the constraints to form a vector
programming, thinking of xixj as inner product of vectors in Rn:

maximize
1

2

∑
(i,j)∈E

1− ui · uj

subject to ∀i ∈ [n],ui ∈ Rn, ||ui||2 = 1

This is a relaxation because if we take ui = (xi, 0, · · · , 0), this become an instance of the quadratic
programming. The vector programming is further equivalent to the following semidefinite program-
ming:

maximize
1

2

∑
(i,j)∈E

1−Xi,j

subject to ∀i ∈ [n], Xi,i = 1, X ⪰ 0

where X is a matrix with entries Xi,j .
In general, once we have an SDP, the approach is to solve the SDP in polynomial time, and

through a “rounding” process convert the fractional optimum of the relaxation into a solution that
is feasible for the original problem. In the case of Goemans-Williams, we Cholesky-decompose
the optimal matrix X = UTU , with ui’s being the column vectors, we then choose a random
hyperplane in Rn through the origin, and the cut we find is the ui’s above or below the plane. A
detailed analysis in [GW95] shows that we can achieve approxiamtion ratio α ≈ .878

Approximation through convex relaxation has its limitation, and one could imagine the limita-
tion will give rise to inapproximability results.

6.3.2 Integrality Gap, Dictatorship Test, and Unique Games

Definition 6.13 (Integrality Gap). The integrality gap of a relaxation is the worst-case ratio
between the true optimum of a combinatorial problem and the optimum of the relaxation.

Raghavendra gave a formal explanation to the phenomenon that UGC-based inapproximabil-
ity matches SDP-based approximation ratio in his seminal paper [Rag08] by showing a generic
conversion from SDP integrality gaps to UGC hardness results for every Boolean CSP (the result
generalizes to very finite-domain CSP as well). In other words, for every Boolean CSP, if one takes
a canonical SDP relaxation, then every integrality gap g also implies a reduction showing that no
approximation can be better than g assuming UGC.

We capture relationships between integrality gap, dictatorship test, and Unique Games hardness
in the following sequence of implications after adding a few final ingredients.

Definition 6.14 (Dictator). A function f : {0, 1}n → {0, 1} is a dictator if the function is given
by f(x) = xi for some fixed i ∈ [n].

Dictatorship testing is the property testing task that, given function f (not explicitly), query
the function at a few locations, and distinguish whether the function is a dictator, or far from every
dictator. We define a generalized CSP (GCSP) to be a CSP with the predicate returning real value
in [−1, 1] instead of {0, 1}. In other words, instead of satisfied/unsatisfied, we now have some sort
of payoff function, and allowing the payoff to be negative, we can deal with minimization tasks as
well.

The connection between integrality gap instance of a SDP and Unique Game hardness is made
through dictatorship testing. Let Φ be an instance of a GCSP Λ, using the SDP solution to Φ,

14

we can construct a dictatorship test DICTΦ whose completeness (the probability of success of a
true dictator function) is nearly equal to the SDP value. For every function f , there is a generic
rounding scheme Roundf for the GCSP Λ.

• (Integrality Gaps =⇒ Dictatorship Tests) It can be shown that the soundness of the dicta-
torship test is very close to the performance of the rounding scheme.

• (Dictatorship Test =⇒ Unique Games Hardness) It can be shown that assuming the UGC,
it is NP-hard to distinguish between if the optimal assignment has value higher than the
completeness of dictatorship test, or if every assignment has value lower than soundness of
dictatorship test.

• (Unique Games Hardness =⇒ Integrality Gaps)It can be shown that for every Φ, there exists
Φ′ that has higher SDP value than Φ, and integral optimum lower than the soundness of
dictatorship of Φ.

This concludes our discussion on the hardness of approximability of Boolean CSPs in the poly-
nomial time setting. In the next section, we turn to the approximability of Boolean CSPs with
respect to space using sketching algorithms.

6.4 Space dichotomy in the context of linear sketches

In this section we discuss the recent tight dichotomy result on CSP approximation with sketching
algorithms working in subpolynomial space regime. The proofs in [CGSV21] is rather convoluted
as are most dichotomy results, so instead of giving a complete proof sketch, we will only highlight
the contrast between this result and the polynomial time inapproximability results introduced in
the previous section in an attempt to draw a broader picture of CSP approximability. We first state
the dichotomy as the following theorem (we state the Boolean version, and note that [CGSV22]
generalizes it to any finite-domain CSP):

Theorem 6.15. For every k ∈ N, for every function f : {−1, 1}k → {0, 1}, and for every 0 ≤ β <
γ ≤ 1, at least one of the following always holds:

• (γ, β)-Max-CSP(f) has a O(log n)-space linear sketching algorithm.
• For every ε > 0, any sketching algorithm that solves (γ−ε, β−ε)-Max-CSP(f) requires Ω(

√
n)

space. In particular, if γ = 1, then any sketching algorithm that solves (1, β+ ε)-Max-CSP(f)
requires Ω(

√
n) space.

Moreover, this dichotomy is decidable, that is, there is an algorithm that uses space poly(2k, ℓ)
that decides which of the two conditions holds given the truth table of f , and γ, β as ℓ-bit rationals.

6.4.1 Contrast with dichotomies in the polynomial setting

In [CGSV21] the authors gave an excellent comparison between the results in that paper with
previous dichotomies including the one in [Rag08]. The first and foremost difference is that the
negative result is unconditional, i.e. not dependent on complexity assumptions like the UGC is
true or P ̸= NP. The constructions in [CGSV21] and [CGSV22] are also more explicit, in the sense
that they deal with (γ, β)-approximability instead of ∀ε > 0(γ − ε, β + ε)-approximability where ε
needs to be given as an input.

15

7 Conclusion and Open Problems

In this report, we’ve seen examples of constraint satisfaction problems and algorithmic approaches
to solve them exactly or approximately. We discussed various dichotomy-like results associated
with exact satisfiability, polynomial time approximability, as well as space complexity of approxi-
mation with linear sketches. Some of the results have very deep connections with open problems
in computation complexity. We conclude this project by listing a few interesting directions going
off of what was discussed in this report regarding CSPs, a family of problems of great theoretical
and practical interest: can we extend the sketching dichotomy to streaming algorithms; can we
show the space dichotomy for function family with more than one f ; what happens if we con-
sider multiple pass streaming algorithms? One could also take the opposite direction and look for
approximation-resistant functions with respect to each model we mentioned.

16

References

[Sch78] Thomas J. Schaefer. “The complexity of satisfiability problems”. In: Proceedings of
the tenth annual ACM symposium on Theory of computing (1978) (cit. on p. 10).

[GW95] Michel X. Goemans and David P. Williamson. “Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Programming”. In:
J. ACM 42.6 (Nov. 1995), pp. 1115–1145. issn: 0004-5411. doi: 10.1145/227683.
227684 (cit. on pp. 13, 14).

[Liu98] Zhe Liu. “Algorithms for constraint satisfaction problems (csps)”. PhD thesis. Uni-
versity of Waterloo, 1998 (cit. on p. 3).

[FV99] Tomás Feder and Moshe Y. Vardi. “The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory”. In:
SIAM J. Comput. 28 (1999), pp. 57–104 (cit. on p. 10).

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. “Improved Rounding Techniques for the
MAX 2-SAT and MAX DI-CUT Problems”. In: Conference on Integer Programming
and Combinatorial Optimization. 2002 (cit. on p. 13).

[KKMO04] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. “Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs?” In: 45th Annual IEEE Symposium on
Foundations of Computer Science. 2004, pp. 146–154. doi: 10.1109/FOCS.2004.49
(cit. on p. 13).

[Aus07a] Per Austrin. “Balanced Max 2-Sat Might Not Be the Hardest”. In: Proceedings of
the Thirty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’07. San
Diego, California, USA: Association for Computing Machinery, 2007, pp. 189–197.
isbn: 9781595936318. doi: 10.1145/1250790.1250818 (cit. on p. 13).

[Aus07b] Per Austrin. “Towards Sharp Inapproximability For Any 2-CSP”. In: 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07). 2007, pp. 307–
317. doi: 10.1109/FOCS.2007.41 (cit. on p. 11).

[Rag08] Prasad Raghavendra. “Optimal Algorithms and Inapproximability Results for Every
CSP?” In: STOC ’08. New York, NY, USA: Association for Computing Machinery,
2008, pp. 245–254. isbn: 9781605580470. doi: 10.1145/1374376.1374414 (cit. on
pp. 10, 12–15).

[CH09] Graham Cormode and Marios Hadjieleftheriou. “Finding the Frequent Items in Streams
of Data”. In: Commun. ACM 52.10 (Oct. 2009), pp. 97–105. issn: 0001-0782. doi:
10.1145/1562764.1562789 (cit. on p. 6).

[Bul17] Andrei A. Bulatov. “A Dichotomy Theorem for Nonuniform CSPs”. In: 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS) (2017), pp. 319–
330 (cit. on p. 10).

[MM17] Konstantin Makarychev and Yury Makarychev. “Approximation Algorithms for CSPs”.
In: The Constraint Satisfaction Problem: Complexity and Approximability. Ed. by An-
drei A. Krokhin and Stanislav Zivný. Vol. 7. Dagstuhl Follow-Ups. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, pp. 287–325. doi: 10.4230/DFU.VOL7.15301.
11 (cit. on pp. 5, 7, 8).

[Zhu17] Dmitriy Zhuk. “A Proof of CSP Dichotomy Conjecture”. In: 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS). 2017, pp. 331–342. doi:
10.1109/FOCS.2017.38 (cit. on p. 10).

17

https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1109/FOCS.2004.49
https://doi.org/10.1145/1250790.1250818
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1562764.1562789
https://doi.org/10.4230/DFU.VOL7.15301.11
https://doi.org/10.4230/DFU.VOL7.15301.11
https://doi.org/10.1109/FOCS.2017.38

[CGSV21] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. “Ap-
proximability of all Boolean CSPs with linear sketches”. In: 2021 (cit. on pp. 11, 15).

[CGSV22] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. “Ap-
proximability of all finite CSPs with linear sketches”. In: 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS). 2022, pp. 1197–1208. doi:
10.1109/FOCS52979.2021.00117 (cit. on pp. 10–12, 15).

[Sud22] Madhu Sudan. Streaming and Sketching Complexity of CSPs: A survey. 2022. arXiv:
2205.02744 [cs.CC] (cit. on p. 9).

18

https://doi.org/10.1109/FOCS52979.2021.00117
https://arxiv.org/abs/2205.02744

	Introduction
	Notation and Definitions
	Solving CSPs (Traditional Approaches)
	Generate and test
	Tree search
	Constraint propagation
	Combination

	Streaming algorithms
	Counter-based algorithms
	Majority problem
	Frequency problem
	Other counting problems
	Summary

	Sketch algorithms
	Some sketch algorithms
	Count Min Sketch structure

	Summary
	Counter-based algorithms
	Sketch algorithms
	Key differences between these approaches

	Streaming and Sketching Algorithms for Boolean CSPs
	What is an approximation algorithm for a CSP?
	Streaming and sketching algorithms for CSPs

	Dichotomy in Boolean CSPs
	Background
	Preliminaries
	Unique Games Conjecture and Inapproximability of Boolean CSPs
	Semidefinite Programming Relaxation
	Integrality Gap, Dictatorship Test, and Unique Games

	Space dichotomy in the context of linear sketches
	Contrast with dichotomies in the polynomial setting

	Conclusion and Open Problems

