
CS 6810: Theory of Computing Fall 2021

Lecture 9: Sept 23, 2021

Lecturer: Eshan Chattopadhyay Scribe: Matthew Eichhorn

1 The computational power of P/poly

Given a function S : N→ N, we define the set Size(S(n)) as the languages which can be computed
by circuit families bounded by S(n). That is, a language L ∈ Size(S(n)), if for each n ∈ N, there is
a boolean circuit with S(n) wires that determines whether each x ∈ {0, 1}∗ belongs to L.

We define the class of languages P/poly as,

P/poly :=
⋃
c∈N

Size(nc).

Theorem 1.1. P (P/poly.

Proof. We can split the theorem into two separate claims.

1. P ⊆ P/poly,

2. There is a language L ∈ P/poly which does not belong to P.

For the first claim, the proof is very similar to that of the Cook Levin Theorem. Given a Turing
machine M running in O(nc) time, we can simulate M by an oblivious Turing machine M̂ running
in O(nc log nc) = O(nc+1) time, where the movements of the tape heads does not depend on the
tape contents. For a particular n ∈ N, a transcript of M ’s execution consists of T (n) snapshots, each
encoding the machine’s state and the symbols of its heads. Each of these snapshots is a deterministic
function of a constant number of previous snapshots, which is also easily computed. Therefore,
we can use a constant-sized circuit to construct each successive snapshot. Upon reaching the final
snapshot, we can use a final constant-sized circuit to check whether the snapshot represents an
accepting state of M̂ . Wiring these smaller circuits together results in a circuit with size polynomial
in n. Putting together these circuits for all n ∈ N, we have a polynomial-sized circuit family that
recognizes the same language as M .

For the second claim, we in fact prove something stronger. We show that there is an undecidable
language in P/poly.

A language L ∈ {0, 1}∗ is unary if L ⊆ {1}∗. Any unary language can be computed by a Size(n+2)
circuit family: For each n ∈ N, if 1n ∈ L, then let Cn be the circuit that feeds all n input bits into
an n-ary AND gate, and outputs this result. This will accept only the string 1n. If 1n 6∈ L, then
L includes no n-bit strings. In this case, we can take Cn to be the size-3 circuit which outputs
(x1 ∧ x1), thereby rejecting every string.

Now, consider a unary encoding of the language of the halting problem, HALT = {〈M,x〉 :
M halts on input x}. That is, consider an enumeration of all 〈Turing machine, string〉 pairs, and
let L be the unary language where 1n ∈ L if and only if the n’th pair in the enumeration is in
HALT. L is undecidable because it reduces to the halting problem. However, L ∈ P/poly by the
previous paragraph.

1

Lecture 9: Sept 23, 2021 2

Note that the added power of P/poly comes from our ability to specify a different circuit for each
input size. The particular families of circuits that we considered were examples of non-uniform
circuit families: families {Cn}n∈N for which there is no Turing machine that, upon input n, returns
a description of circuit Cn.

Next, we state a strongly-believed conjecture that relates P/poly and NP.

Conjecture 1.2. NP 6⊆ P/poly. That is, there exists some language L ∈ NP that is recognized
only by super-polynomial sized circuit families.

If this conjecture is true, then it would imply that P 6= NP, since P ⊆ P/poly. Note that this
conjecture establishes a “circuit lower bound”, as it ensures that a circuit must have a sufficiently
large size in order to recognize a language. In the following section, we establish more circuit
bounds.

2 Circuit Bounds

2.1 Upper Bound Results

We’ll establish three, progressively tighter upper bounds on circuit size. That is, we’ll show that
there is are Size(T (n)) circuit families that are capable of recognizing any language, for three
increasingly-tight functions T : N→ N.

Lemma 2.1. Any language L ∈ {0, 1}∗ is in Size(O(n · 2n)).

Proof. Fix n ∈ N, and let Ln := L∩{0, 1}n. Let fn : {0, 1}n → {0, 1} be the boolean function with
fn(x) = 1 ⇐⇒ x ∈ Ln. Then, we wish to design a circuit that computes the function fn.

Consider the truth table for fn. For example,

x1 x2 x3 . . . xn fn
0 0 0 . . . 0 1

0 1 0 . . . 0 0

1 1 1 . . . 1 1

For each truth table row with fn = 1, we can construct an n-way conjunction that checks whether
all input bits agree with that row. That is, in the i’th row of the table, i = (xn xn−1 . . . x2 x1)2
we have the conjunction

Ci =
∧

j:xj=1

xj ∧
∧

k:xk=0

xk.

Then, fn can be represented as the disjunction fn =
∨

iCi. This disjunction includes at most 2n

conjunctions, in the case that fn includes all length-n binary strings. The total number of wires
used for this computation is bounded above by 3

2 · n · 2
n + 2n + 1 = O(n · 2n).

To improve upon this result, we consider handling the variables one at a time.

Lecture 9: Sept 23, 2021 3

Lemma 2.2. Any language L ∈ {0, 1}∗ is in Size(O(2n)).

Proof. Similar to above, fix n ∈ N, let Ln := L ∩ {0, 1}n, and let fn : {0, 1}n → {0, 1} be the
boolean function with fn(x) = 1 ⇐⇒ x ∈ Ln. Note that,

f(x1, x2, . . . , xn) =
(
f(x1, x2, . . . , xn−1, 0)︸ ︷︷ ︸

f0(x1,x2,...,xn−1)

∧xn
)
∨
(
f(x1, x2, . . . , xn−1, 1)︸ ︷︷ ︸

f1(x1,x2,...,xn−1)

∧xn
)
.

We can apply this same decomposition on f0 and f1, and recurse n − 2 additional times until we
have taken care of all of the variables. A diagram for the first level of this decomposition is below.

∨

∧ ∧

¬
f0 f1

x1 x2 . . . xn−1

xn

Note that the number of wires in the circuit of size n is equal to 2 times the number of wires in the
curcuit of size n− 1, plus 6 additional (bolded) wires. Therefore, the sizes of these circuits can be
upper bounded by,

T (1) = 2, T (n) = 2 · T (n− 1) + 6.

Solving this recurrence, we find that T (n) = 2n+2 − 6 = O(2n).

To improve this bound one final time, we note that the number of “sub-circuits” is increasing
exponentially in each decomposition step of the above proof. Thus, at some point, there will be
sub-circuits than possible functions that they can compute. We can reduce the circuit size by
cleverly curtailing the decomposition.

Lemma 2.3. Any language L ∈ {0, 1}∗ is in Size
(
O
(
2n

n

))
.

Proof. Suppose that we unfold the recursion from the previous lemma for n − k steps (for some
constant k that we will fix later). We have used O(2n−k) wires so far, and are left to consider

functions of k variables. There are 22
k

such functions, each of which can be computed by a circuit
of size O(2k) (by the previous lemma). This gives a total circuit size of

O
(

22
k · 2k + 2n−k

)
.

Let k = log2 n− 1. Then, this simplifies to

O
(
n
2 · (
√

2)n + 2n

2n

)
= O

(
2n

2n

)
.

In fact, this bound is tight; there exists languages that is only computable by circuits of size Ω
(
2n

n

)
.

Lecture 9: Sept 23, 2021 4

2.2 A Lower Bound Result

Lemma 2.4. There is a sufficiently large constant c such that there is some language L ∈ {0, 1}∗
that is not in Size

(
2n

c·n
)
.

Proof. We establish this claim with a counting argument; namely, we find c such that the number
of circuits of size 2n

c·n is smaller than the number of functions {0, 1}n → {0, 1}.

The number of such functions is 22
n
, as describing such a function amounts to selecting a subset

of {0, 1}n to map to 1, and |{0, 1}n| = 2n.

To count the number of size s circuits on n input variables, we consider their bit representations.
Such a circuit has O(s) gates, whose labels can be each described by a constant number of bits.
Each of the O(s) wires is described by its 2 endpoints, which are each identified by O(log s) bits.
Therefore, the description requires O(s log s) bits, meaning there are 2O(s log s) = sO(s) such circuits.
We can choose c′ ∈ N such that this number of circuits is at most sc

′·s for all s.

Now, we substitute s = 2n

c·n : (
2n

c·n
) c′·2n

c·n =
(

2
c·n
) c′·2n

c ≤
(
22

n) c′
c .

Therefore, taking c = c′ + 1 ensures that there are more functions {0, 1}n → {0, 1} than circuits of
size s.

3 Turing Machines with Advice

Just as with oracle Turing machines, it can often be useful to endow a Turing machine with some
additional power and then study how this expands what it is able to compute. Here, we introduce
the concept of a Turing machine that “takes advice”. Then we compare the power of Turing
machines with advice to polynomial-sized boolean circuit families.

Let T, a : N → N be functions. Then, the class of languages decidable by a T (n)-time Turing
machine with a(n) advice is denoted DTIME(T (n))/a(n). A language L ∈ DTIME(T (n))/a(n), if there
exists a sequence {αn}n∈N of advice strings, with each αn ∈ {0, 1}a(n), and a Turning machine M
for which

M(〈x, αn〉) = 1 ⇐⇒ x ∈ L

for every x ∈ {0, 1}n and the computation of M(〈x, αn〉) requires at most O(T (n)) steps.

Theorem 3.1. P/poly =
⋃

c,d∈N

DTIME(nc)/nd.

Proof. For the forward containment, suppose that L ∈ P/poly. Consider an input string x, with
|x| = n. Let αn be a description of the size-n circuit that recognizes L ∩ {0, 1}n. Note that this
circuit contains polynomially-many wires, so has a polynomial description. Upon receiving input
〈x, αn〉, the Turing machine M should simulate the circuit described by αn on input x, which can
be done in polynomial time. Since this is true for all x ∈ {0, 1}∗, L ∈

⋃
c,d∈N DTIME(nc)/nd.

For the reverse containment, suppose that L ∈
⋃

c,d∈N DTIME(nc)/nd. For any n ∈ N we can use
the construction from the proof of Theorem 1.1 to construct a polynomial-sized circuit Cn that
outputs the same value as machine M on 〈x, αn〉. Since the value of the advice bits is fixed, we
can modify Cn into a circuit C ′n that takes only x as input. We do this by “hard-wiring” these

Lecture 9: Sept 23, 2021 5

values of αn into the circuit. With a constant number of wires, we can add gates to our circuit
that deterministically output 0 and 1 (e.g. 0 = x1 ∧ ¬x1, 1 = x1 ∨ ¬x1). Then, we replace all
wires that pass an input bit from αn into a gate with a wire that passes from the constant gate
corresponding to its value. Since this transformation only adds constantly many more wires, the
size of C ′n remains polynomial. Since each C ′n recognizes L ∩ {0, 1}n, L ∈ P/poly.

	The computational power of P/poly
	Circuit Bounds
	Upper Bound Results
	A Lower Bound Result

	Turing Machines with Advice

