CS 6810: Theory of Computing

Fall 2021

Lecture 8: Sep 21, 2021

Lecturer: Eshan Chattopadhyay

Scribe: Laurel Newman

1 Recap

Recall the following complexity classes defined in last class: $L = \text{DSPACE}(\log n)$, $NL = \text{NSPACE}(\log n)$. It is conjectured that L = NL. We believe this problem to be more tractable than the question of P vs NP.

One of the main focus in this class is to prove the following theorem.

Theorem 1.1 (Immerman & Szelepscènyi). NL = co-NL.

Recall that PATH (defined below) is NL-complete (under logspace reductions). Thus, \overline{PATH} is co-NL complete. We will show an NL algorithm for \overline{PATH} to prove the above theorem.

Definition 1.2. PATH = { $\langle G, s, t \rangle$: G a directed graph, s, t nodes in G s.t. \exists a path from s to t}

$2 \quad \overline{\text{PATH}} \text{ is in NL}$

Definition 2.1. $\overline{\text{PATH}} = \{ \langle G, s, t \rangle : G \text{ a directed graph, } s, t \text{ nodes in } G \text{ s.t. } \not\exists a \text{ path from } s \text{ to } t \}$

The following is the main result of this section.

Lemma 2.2. There is an $O(\log n)$ -space NDTM for PATH.

We now note here that if we let $c_i = \{v \text{ is reachable from } s \text{ in } \leq i \text{ steps}\}$, then proving Lemma 2.2 is equivalent to showing membership of t in c_n .

Claim 2.3. There is an NDTM that on input i, v uses $O(\log n)$ -space and accepts if $v \in c_i$.

Proof Idea. This follows from the proof for PATH \in NL, where we simply let t = v, and maintain that our counter of how many steps we take must halt after *i* steps.

Claim 2.4. For any $i \ge 1$ and any vertex v, with $|c_{i-1}|$ given (as input), there exists an $O(\log n)$ -space NDTM which accepts if $v \notin c_i$.

Proof. Sequentially go through $j \in \{1, \ldots, n\}$, checking membership in c_i :

Initialize w = 0, j = 1, where w is our counter for $|c_{i-1}|$ and j is our counter for which vertex we're considering. Note these both take $\log n$ bits to store.

We reuse space to non-deterministically check if $j \in c_{i-1}$ (which we can do by Claim 2.3, taking $O(\log n)$ space).

• if yes: check if v is a neighbor of j or if v = j.

- if yes: reject.
- else: let $w \leftarrow w + 1$ and let $j \leftarrow j + 1$ if j < n.

• else: let $j \leftarrow j + 1$ if j < n.

Once j = n, we are finished with checking all vertices, so we check that $w = |c_{i-1}|$:

- if yes: accept.
- else: reject.

Claim 2.5. There exists an $O(\log n)$ space NDTM, which given $|c_{i-1}|$ and any computation path as input, either rejects or outputs $|c_i|$, and does not trivially always reject.

Before we prove this final claim, we note how these claims enable us to prove Lemma 2.2:

Proof Sketch for Lemma 2.2. We have that $c_0 = \{s\}$, so $|c_0| = 1$ is known. From here, by repeatedly using the NDTM guaranteed by Claim 2.5 we can find $|c_1|, \ldots, |c_{n-1}|$, which by Claim 2.4 can then be used to determine if $t \in c_n$.

Proof Sketch for Claim 2.5. We construct a counter for checking vertices $1, \ldots, n$ and a counter for $|c_i|$. We check for each vertex if it is in c_i (by Claim 2.3) and increment $|c_i|$ if it is. Again, we use sequential non-determinism.

The above proof can be used to prove the more general result.

Theorem 2.6. For any space-constructible S(n),

NSPACE(S(n)) = co-NSPACE(S(n)).

3 Boolean Circuits

Definition 3.1. Boolean circuits are a non-uniform model of computation. That is, for each input length, we use a different algorithm. Thus, we will talk about circuit families $C = \{C_n\}_{n \in \mathbb{N}}$ computing functions or languages.

3.1 Basic definitions

Circuits have a layer of 'input nodes,' which feed into layers of 'internal nodes,' forming a directed acyclic graph. These interal nodes all feed via some path eventually into an 'output node' or nodes. (We might consider for instance, the problem of sorting a list of numbers as a problem where we might require multiple output nodes.)

In circuits, in-degree is also called 'fan-in' and out-degree is also called 'fan-out.' Edges are also called 'wires.'

Nodes are also called 'gates.'

- input nodes: labelled with variables, have in-degree 0.
- output node(s): have out-degree 0.
- internal nodes: labelled with logical gates (\land, \lor, \neg) . \land and \lor gates have no restrictions, while \neg gates have in/out-degree 1.

The size of a circuit s(C) is the number of wires in C. The depth of a circuit d(C) is the length of the longest input node to output node path.

Definition 3.2. A language $L \in \{0,1\}^*$ is computed by $\{C_n\}_{n \in \mathbb{N}}$ if $\forall n \in \mathbb{N}, x \in \{0,1\}^n$, then $C_n(x) = L(x)$.

The size of $\{C_n\}_{n\in\mathbb{N}}$ is T(n) (where $T:\mathbb{N}\to\mathbb{N}$) if $s(C_n)=T(n)$ for all $n\in\mathbb{N}$.

Definition 3.3. P/POLY is the set of languages computed by poly-sized circuits.

A major question is to understand the power of P/POLY? For instance, what is the relation between P and P/POLY. We discuss these in the next class.