
CS 6810: Theory of Computing Fall 2021

Lecture 8: Sep 21, 2021

Lecturer: Eshan Chattopadhyay Scribe: Laurel Newman

1 Recap

Recall the following complexity classes defined in last class: L = dspace(log n), NL = nspace(log n).
It is conjectured that L = NL. We believe this problem to be more tractable than the question of
P vs NP.

One of the main focus in this class is to prove the following theorem.

Theorem 1.1 (Immerman & Szelepscènyi). NL = co-NL.

Recall that PATH (defined below) is NL-complete (under logspace reductions). Thus, PATH
is co-NL complete. We will show an NL algorithm for PATH to prove the above theorem.

Definition 1.2. path = {〈G, s, t〉 : G a directed graph, s, t nodes in G s.t. ∃ a path from s to t}

2 PATH is in NL

Definition 2.1. path = {〈G, s, t〉 : G a directed graph, s, t nodes in G s.t. 6 ∃ a path from s to t}

The following is the main result of this section.

Lemma 2.2. There is an O(log n)-space NDTM for path.

We now note here that if we let ci = {v is reachable from s in ≤ i steps}, then proving Lemma 2.2
is equivalent to showing membership of t in cn.

Claim 2.3. There is an NDTM that on input i, v uses O(log n)-space and accepts if v ∈ ci.

Proof Idea. This follows from the proof for path ∈ NL, where we simply let t = v, and maintain
that our counter of how many steps we take must halt after i steps.

Claim 2.4. For any i ≥ 1 and any vertex v, with |ci−1| given (as input), there exists an O(log n)-
space NDTM which accepts if v /∈ ci.

Proof. Sequentially go through j ∈ {1, . . . , n}, checking membership in ci:
Initialize w = 0, j = 1, where w is our counter for |ci−1| and j is our counter for which vertex

we’re considering. Note these both take log n bits to store.
We reuse space to non-deterministically check if j ∈ ci−1 (which we can do by Claim 2.3, taking

O(log n) space).

• if yes: check if v is a neighbor of j or if v = j.

– if yes: reject.

– else: let w ← w + 1
and let j ← j + 1 if j < n.

1

Lecture 8: Sep 21, 2021 2

• else: let j ← j + 1 if j < n.

Once j = n, we are finished with checking all vertices, so we check that w = |ci−1|:

• if yes: accept.

• else: reject.

Claim 2.5. There exists an O(log n) space NDTM, which given |ci−1| and any computation path
as input, either rejects or outputs |ci|, and does not trivially always reject.

Before we prove this final claim, we note how these claims enable us to prove Lemma 2.2:

Proof Sketch for Lemma 2.2. We have that c0 = {s}, so |c0| = 1 is known. From here, by repeatedly
using the NDTM guaranteed by Claim 2.5 we can find |c1|, . . . , |cn−1|, which by Claim 2.4 can then
be used to determine if t ∈ cn.

Proof Sketch for Claim 2.5. We construct a counter for checking vertices 1, . . . , n and a counter for
|ci|. We check for each vertex if it is in ci (by Claim 2.3) and increment |ci| if it is. Again, we use
sequential non-determinism.

The above proof can be used to prove the more general result.

Theorem 2.6. For any space-constructible S(n),

nspace(S(n)) = co-nspace(S(n)).

3 Boolean Circuits

Definition 3.1. Boolean circuits are a non-uniform model of computation. That is, for each
input length, we use a different algorithm. Thus, we will talk about circuit families C = {Cn}n∈N
computing functions or languages.

3.1 Basic definitions

Circuits have a layer of ‘input nodes,’ which feed into layers of ‘internal nodes,’ forming a directed
acyclic graph. These interal nodes all feed via some path eventually into an ‘output node’ or nodes.
(We might consider for instance, the problem of sorting a list of numbers as a problem where we
might require multiple output nodes.)

In circuits, in-degree is also called ‘fan-in’ and out-degree is also called ‘fan-out.’ Edges are also
called ‘wires.’

Nodes are also called ‘gates.’

• input nodes: labelled with variables, have in-degree 0.

• output node(s): have out-degree 0.

• internal nodes: labelled with logical gates (∧,∨,¬). ∧ and ∨ gates have no restrictions, while
¬ gates have in/out-degree 1.

Lecture 8: Sep 21, 2021 3

The size of a circuit s(C) is the number of wires in C. The depth of a circuit d(C) is the length
of the longest input node to output node path.

Definition 3.2. A language L ∈ {0, 1}∗ is computed by {Cn}n∈N if ∀n ∈ N, x ∈ {0, 1}n, then
Cn(x) = L(x).

The size of {Cn}n∈N is T (n) (where T : N→ N) if s(Cn) = T (n) for all n ∈ N.

Definition 3.3. p/poly is the set of languages computed by poly-sized circuits.

A major question is to understand the power of p/poly? For instance, what is the relation
between p and p/poly. We discuss these in the next class.

	Recap
	PATH is in NL
	Boolean Circuits
	Basic definitions

