
CS 6810: Theory of Computing Fall 2021

Lecture 7: Sept 16, 2021

Lecturer: Eshan Chattopadhyay Scribe: Carlos Mart́ınez

1 PSPACE-complete Problems

It is widely believed that P 6= PSPACE, as otherwise P = NP. Just as NP-complete problems are
the “hardest” of all problems in NP, PSPACE-complete problems are the “hardest” problems in
PSPACE.

Definition 1.1. A language A is PSPACE-hard if for every L ∈ PSPACE, L ≤p A. If in addition
A ∈ PSPACE, then A is PSPACE-complete.

Note that in the above definition, ≤p denotes a polynomial time Karp reduction. One may
wonder if perhaps using polyspace reductions can be used instead. It is not hard to see that
polynomial space reduction would be too powerful. In fact, it is not hard to see that every problem
in PSPACE (except ∅ and {0, 1}∗) would be PSPACE-complete (if we use PSPACE reductions).

We now introduce our first PSPACE-complete problem. To do this, we first need the notion of
a quantified Boolean formula, wherein variables are quantified with ∃ (i.e., exists) and ∀ (i.e., for
all) quantifiers. A quantified Boolean formula has the form

Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn),

where Qi ∈ {∃,∀} and φ(·) is an unquantified Boolean formula. Note that if all variables in the
formula are quantified, then such a formula is either TRUE or FALSE. As a first example, suppose
we are given a quantified Boolean formula in which Qi = ∃ for all i. Then, we are essentially asking
whether φ(·) is satisfiable (i.e., we recover the SAT problem). As a second example, suppose Qi = ∃
if i is odd and Qi = ∀ if i is even. Then, we can think of the quantified Boolean formula as asking
whether there is a robust winning strategy for the first player making a move in a two-player game.

We define the language TQBF as the set of TRUE quantified Boolean formulas.

Theorem 1.2. TQBF is PSPACE-complete.

Proof. We first need to show TQBF ∈ PSPACE. Let ψ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn) be
a quantified Boolean formula on n variables and let l denote the size of φ. Let A be a recursive
algorithm defined as follows. If n = 0, the formula can be evaluated in O(l) space. If n > 0, drop
the quantifier Q1 and make two recursive calls. In the first call, let x1 = 0 everywhere in φ(·). In
the second call, let x1 = 1 everywhere in φ(·). If Q1 = ∃, algorithm A returns TRUE if and only
if at least one of the recursive calls is TRUE. If Q2 = ∀, algorithm A returns TRUE if and only
if both of the recursive calls are TRUE. Since each recursive call reuses space, A uses polynomial
space. More formally, A uses space S(n, l) = S(n− 1, l) +O(l) = O(nl) = poly(n).

We now need to show that, for any L ∈ PSPACE, L ≤p TQBF. Let L ∈ PSPACE. Let M be a
Turing machine that decides L in polynomial space. We use M to construct a quantified Boolean
formula ψ that, given input x ∈ {0, 1}∗, is true if and only if M accepts x. That is,

x ∈ L ⇐⇒ ψ ∈ TQBF.

Let G = GM,x be the configuration graph of M on input x. Note that G has 2poly(n) = 2l = N
nodes. Recall the following facts from the previous lecture:

1

Lecture 7: Sept 16, 2021 2

1. x ∈ L if and only if there exists a path from Cstart to Caccept in G.

2. There exists a polynomial sized formula φ on O(l) variables such that φ(Ci, Cj) is TRUE if
and only if there exists an edge from Ci to Cj in G. Here, l is the number of bits needed to
encode a state of M .

We will these facts to produce ψ. As a first approach, note that x ∈ L if and only if there exist
C1, · · · , CK such that

φ(Cstart, C1) ∧ φ(C1, C2) ∧ . . . φ(CK , Caccept).

Unfortunately, this requires O(N) space. As a second approach, we recursively build a quantified
Boolean formula ψK(Ci, Cj) that is TRUE if and only if there exists a path of length ≤ 2k from
Ci to Cj in G. Then, the goal is to evaluate ψl(Cstart, Caccept). We let ψ0 = φ as in Fact 2. For
0 < k ≤ l, we let ψk(Ci, Cj) = ∃Cqψk−1(Ci, Cq)∧ψk−1(Cq, Cj). Note however that the formulas ψk

are twice the size of the formulas φk−1. Upon unrolling all formulas, we recover our first approach
using O(N) space.

The crucial observation of why our second approach fails is that it does not use the full power
of quantified Boolean formulas: it only uses ∃ quantifiers. We can fix this by letting

ψk(Ci, Cj) = ∃Cq∀C ′∀C ′′
(((

C ′ = Ci ∧ C ′′ = Cq

)
∨
(
C ′ = Cq ∧ C ′′ = Cj

))
=⇒ ψk−1(C

′, C ′′)
)

Note that |ψk| = poly(n) + |ψk−1|, and so |φl| = l · poly(n) = poly(n).

Since PSPACE = NPSPACE, we also have that TQBF is NPSPACE-complete.

2 Sublinear Space Complexity

We now consider sublinear, in particular logarithmic space complexity. Define L = DSPACE(log n)
and NL = NSPACE(logn).

Definition 2.1. f : {0, 1}∗ → {0, 1}∗ is an implicitly logspace computable function if the languages
Lf = {(x, i) : f(x)i = 1} and L′f = {(x, i) : i ≤ |f(x)|} are in L.

That is, f is computable in space S(n) if on input (x, i), there is a space S(n) algorithm that
outputs f(x)i, the ith bit of f(x), provided i ≤ |f(x)|.

Definition 2.2. Language A is logspace reducible to language B, denoted A ≤l B, if there is a
function f : {0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and, for every x ∈ {0, 1}∗,
x ∈ A if and only if f(x) ∈ B.

It not hard to prove that logspace reductions are transitive (see Lemma 4.15 in Arora and
Barak).

Observe that L ⊆ NL ⊆ P. The second containment follows from the fact that we can brute
force the configuration graph of a Turing machine M for a language in NL on input x in time
2O(logn) = O(n). It is conjectured that L = NL but NL ⊂ P, that is there are polynomial time
solvable problems that require more than logarithmic space.

We now give an NL-complete language. Let

PATH = {(G, s, t) : G is a directed graph with a path from s to t}.

Theorem 2.3. PATH is NL-complete.

Lecture 7: Sept 16, 2021 3

Proof. We first claim PATH ∈ NL. To see this, note that a nondeterministic machine can take
a nondeterministic walk starting at s, maintaining a counter of how many steps it has taken, the
index of the vertex it is currently at, and using nondeterminism to select a neighbor of the current
vertex to go next. The machine accepts if and only if the walk reaches the end node t in n − 1
steps, otherwise it rejects. Note that this machine only needs O(log n) space, namely to keep track
of the number of steps it has taken and the identity of the current vertex.

Now, we need to show that for any A ∈ NL, A ≤l PATH. An easy gadget is the configuration
graph G of machine M for a on input x! Namely, x ∈ A if and only if there is a path from Cstart

to Caccept in G. It remains to show the adjacency matrix of G can be implicitly computed by a
logspace reduction. Note that we can deterministically examine any two states C,C ′ of G and check
whether C ′ is one of the (at most two) configurations that can follow C according to the transition
functions of M .

We now define the undirected version of the PATH problem.

UPATH = {(G, s, t) : G is a undirected graph with a path from s to t}.

A highly sophisticated deterministic logspace algorithm was developed by Reingold [1] for UPATH.

Theorem 2.4 (Reingold [1]). UPATH ∈ L.

This provides evidence towards the L
?
=NL conjecture, with hope that perhaps one design such

an algorithm for PATH.

References

[1] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,
2008.

	PSPACE-complete Problems
	Sublinear Space Complexity

