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1 NP-Completeness/Hardness

Recall: Assume A,B ⊆ {0, 1}∗, A ≤p B if there exits a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗, such that x ∈ A⇒ f(x) ∈ B and x /∈ A⇒ f(x) /∈ B.

Definition 1.1. L is NP-hard if for any L′ ∈ NP, L′ ≤p L. (Informally, L is as hard as any other
problem in NP)

Definition 1.2. L is NP-complete if L ∈ NP and L ∈ NP-hard.

Examples of NP-complete problems:

• SAT

– Variables: x1, ..., xn

– Literals: x1, x1, x2, x2, ..., xn, xn

– Clause: Disjunction (OR) of clauses

– CNF: Conjunction (AND) of clauses, e.g.,

φ(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4)

SAT = {φ : φ is a satisfiable CNF}.

• 3-SAT. 3-SAT is a SAT problem with the restriction that reach clause contains 3 literals.

• Minimum Vertex Cover. A vertex cover of a graph is a set of vertices that includes at
least one endpoint of every edge of the graph. Minimum Vertex Cover is to find a minimum
set of vertex cover.

• Maximum Independent Set. An independent set is a set of vertices in a graph, no two
of which are adjacent. Maximum Independent Set is to find an independent set of largest
possible size for a given graph G.

Theorem 1.3. Cook–Levin Theorem: 3-SAT is NP-complete.

Sketch of the proof: Clearly SAT ∈ NP since a proof that φ ∈ SAT is an assignment to the variables
of φ making it true. To prove NP-hardness, for any problem L in NP we need to show L ≤p SAT.
Now suppose that L can be solved by the non-deterministic Turning machine M = (Q,Σ, s, F, δ),
where Q is the set of states, Σ is the alphabet of tape symbols, s ∈ Q is the initial state, F ⊆ Q is
the set of accepting states, and δ ⊆ ((Q \ F )× Σ)× (Q× Σ× {−1,+1}) is the transition relation.
Suppose further that M accepts or rejects an instance of L in time at most p(n) where n is the size
of the instance and p is a polynomial.

Now the main part of the proof is to show that for each input instance x, we construct a
Boolean expression which is satisfiable if and only if the verifier Turning machine Mx that accepts
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Algorithm 1: Algorithm for P1

Input: x
if A(x, ε)→ NO then

return No;
z ← ε;
while (x, z) /∈ R do

if A(x, z ◦ 0)→ YES then
z ← z ◦ 0;

else
z ← z ◦ 1;

return z;

a polysized witness y (if x ∈ L). We try to give a very high level overview here: since M runs in
polynomial time, so at most polynomially tape cells are ever accessed. So we can define Boolean
variables capturing the contents of the relevant tape cells at every step of computation. Moreover,
we can also define the state s and head location of M using Boolean variables. The fact that every
step of computation is local allows us to encode TAPE/HEAD/STATE transition between steps
using Boolean formulas. For more details about how computations are encoded, please refer to the
Arora-Barak book.

Two steps of proving NP-completeness of L:

1. L ∈ NP

2. H ∈ NP-hard and H ≤p L

2 Search vs Decision Problems

We first define an NP relation. A binary relation R ⊆ {0, 1}∗ × {0, 1}∗ is in NP if

1. (x, y) ∈ R⇒ |y| ≤ C · |x|C , for some constant C

2. A polynomial time verifier V exists, such that V (x, y) = 1 if and only if (x, y) ∈ R

Corresponding to R, we have:

• Decision problem: Input x. Output yes if and only if ∃y s.t. (x, y) ∈ R.

• Search problem: Input x. Output y (if any) s.t. (x, y) ∈ R.

Claim 2.1. For any NP search problem P1, there is a corresponding NP-decision problem P2, such
that if P2 can be computed in time T (n), then P1 can be computed in time poly(n) · T (poly(n)).

Corollary 2.2. If P = NP, then search NP has polynomial time algorithm.

Proof of Claim 2.1: Let R be the NP relation corresponding to P1, and P2 accepts (x, y) if there is
z ∈ {0, 1}∗, such that (x, y ◦ z) ∈ R. Let A(·, ·) be the algorithm for P2. See Algorithm 1 for the
description for P1.
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3 Diagonalization and Applications

Diagonalization is a useful and powerful argument that has found many applications, ranging from
the proof that infinity of real numbers is larger than natural numbers to proving that the Halting
problem is undecidable. We will see here a couple of more interesting applications of this argument.

3.1 Time hierarchy theorem

A natural question to consider is if strictly richer classes of languages can be computed by Turing
machines given more compute time. This indeed turns out to be the case, and is called as the
Time Hierarchy theorem, which we state and prove below. The proof will be based on a simple
diagonalization argument.

Theorem 3.1. For any ”time-constructible” t(n) there is a language L ∈ DTIME(t(n)3) but any
turning machine takes at least t(n) time to compute L.

This theorem informally says that given more time, a Turing machine can solve more problems,
and so the time-bounded hierarchy of complexity classes does not completely collapse.

Proof: Define the language of the encodings of machines and their inputs which cause them to
half within t(n)

L = {(xMy, x) : M accepts x in t(|x|) steps}.

Now we can decide L by way of a deterministic Turning machine R, that simulates M for t(|x|)
steps. It is safe to say that this takes at most f(m)3 operations, where m is the size of xMy and
x. So

L ∈ TIME(t(m)3).

The rest of the proof will show that

L /∈ TIME(t(m)).

Assume L ∈ TIME(t(m)) and let K be the decision machine for L. We construct another machine
N , which takes a machine description xMy and runs K on the tuple (xMy, xMy), and then accepts
if K rejects, and rejects if K accepts. Now feed xNy into N itself and ask the question whether N
accepts its own description as input, we get:

• If N accepts xNy, this means K rejects (xNy, xNy), so (xNy, xNy) is not in L, this implies
N does not accept xNy in t(n) steps. Contradiction.

• If N rejects xNy, this means K accepts (xNy, xNy), so (xNy, xNy) is in L, this implies N
does accept xNy in t(n) steps. Contradiction.

3.2 Ladner’s theorem

Here is another interesting application of diagonalization.

Theorem 3.2. Suppose P 6= NP, ∃L ∈ NP \ P which is not NP-complete.

We will prove this in the next class.
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