
CS 6810: Theory of Computing Fall 2021

Lecture 25: Nov 23, 2021

Lecturer: Eshan Chattopadhyay Scribe: Mark Schachner

1 Computing with defective randomness

We take a brief look at the theory of extractors and imperfect randomness.
The motivation for this topic comes from the desire to simulate randomness in real-world appli-

cations, where “true” randomness is difficult to come by. Many of the complexity classes we have
discussed– BPP, RP, interactive and probabilistically checkable proofs, to name a few– have made
crucial use of an unlimited stream of random, uniformly distributed bits. So in order to implement
some of the models of computation we have considered requires some good approximation of this.
Other crucial applications of randomness are in cryptography, distributed computing, etc. This
leads to the notion of extractors, i.e., functions which take in a sequence of biased bits and return
a sequence of bits whose distribution is sufficiently close to uniform.

Example 1.1. [von Neumann’s extractor] An important first example of an extractor is due to
von Neumann in the ’50s: suppose we have a stream of biased bits, i.e, a sequence x1, . . . , xn such
that for each i we have Pr[xi = 1] = p for some p ∈ [0, 1]. Crucially, we do not know the value of
p, but in order for this procedure to work we will require p be bounded away from 0 and 1. von
Neumann observed that, given access to the xi, we could nonetheless output a single bit which was
nearly uniformly distributed. His procedure was as follows:

• Collect the biased bits into pairs (x1, x2), (x3, x4), . . . , (xn−1, xn). (If n is odd we just throw
out the last bit.)

• Take the first pair (x1, x2). If x1 6= x2 then output x1; otherwise, proceed to the next pair.

• Repeat until either a pair where xi 6= xi+1 has been reached (in which case xi is returned),
or all the bits have been exhausted. In this last case we simply return 0.

We can calculate the distribution of the resulting output as follows: if some pair x2i−1 6= x2i is
reached, then (x2i−1, x2i) = (0, 1) with probability (1−p)p, and (x2i−1, x2i) = (1, 0) with probability
p(1−p). These are equal, so as long as we find such a pair we are guaranteed to output 0 and 1 with
equal probability. This leaves the case where no such pair is found, which occurs with probability

(p2 + (1− p)2)n/2 = (1− 2p+ 2p2)n/2 ≤ (1− p)n/2 ≤ e−pn/2.

Thus, the output bit is 2−Ω(n)-close to a uniform bit (for constant p ∈ (0, 1)).

2 Min-entropy, extractors, and some bad news

In this section, we make many of the notions in the above exposition precise. In particular, we
will want to define extractors over certain classes of distributions, so we will need to make a few
definitions in order to state such classes.

We begin with a minor notation convention which we will use repeatedly.

1

Lecture 25: Nov 23, 2021 2

Convention 2.1. We denote natural numbers by n,m, k. We denote by the capitalized versions
of these letters the exponential of the corresponding lowercase value: N = 2n,M = 2m, etc.

Definition 2.2. Let n ∈ N, and let X be a distribution on {0, 1}n, i.e., a map {0, 1}n → [0, 1]
such that

∑
i∈[N]X(i) = 1. The support supp(X) is then the set of values which are possible to be

sampled from X. We define the min-entropy of X by

H∞(X) = min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

Intuitively, H∞(X) is larger if X is closer to a uniform distribution: for instance, if H∞(X) ≥ k,
then for all x ∈ {0, 1}n we have Pr[X = x] ≤ 2−k. Since the sum of X across all values must be 1,
this leads to the observation that H∞(X) is always at most n. We enshrine this in the following
definition:

Definition 2.3. Fix n, k ∈ N, 0 ≤ k ≤ n. An (n, k)-source is then a distribution X on {0, 1}n with
H∞(X) ≥ k.

The last ingredient in the definition of extractors is a formalization of the notion of distance
between distributions, hinted at in the previous section.

Definition 2.4. Let X,Y be distributions over a finite set Ω. The statistical distance between X
and Y is

∆(X,Y) =
1

2
|X − Y |1

=
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]|.

Equivalently,
∆(X,Y) = max

T⊆Ω
|Pr[X ∈ T]− Pr[Y ∈ T]|.

If ∆(X,Y) < ε for some ε > 0 we write X ≈ε Y .

We can think of the latter definition of ∆ above in two ways: the subsets T can be thought of
as “tests” on the sample space Ω, and the statistical distance is then the maximum disagreement
between X and Y across any test, or X,Y can be thought of as probability measures 2Ω → [0, 1],
in which case ∆ is the metric induced by the supremum norm.
Now, we are at last ready to define extractors.

Definition 2.5. Let ε > 0, n,m ∈ N, let Um denote the uniform distribution on {0, 1}m, and let
X be a set of distributions. An ε-extractor for X is a function Ext : {0, 1}n → {0, 1}m such that
for all X ∈ X we have Ext(X) ≈ε Um.

von Neumann’s example above had m = 1 (for the class of independent biased sources). Some
important remarks about this definition:

Remark 2.6.

(i) Like our other models of randomness, the extractor is allowed random access to all of the bits
in its input. So the only question of efficiency is the relationship between the input dimension
n and the output dimension m.

Lecture 25: Nov 23, 2021 3

(ii) Unlike our other dealings with randomness, however, we do not allow multiple accesses or
repeated trials on the distribution. Rather, the extractor is thought of as a simple function
which runs once on the instance it is given.

Given our definitions, a natural question thus arises: for what values of n, k, ε do there exist
ε-extractors for the class of (n, k)-sources? We conclude this section with an unfortunate answer
to this question.

Proposition 2.7. For all ε < 1/2, n ∈ N, k ≤ n − 1, no ε-extractor exists for the class of (n, k)-
sources.

Proof. Suppose for some ε > 0,m ∈ N that f : {0, 1}n → {0, 1}m is an ε-extractor for (n, k)-
sources. By taking only the first of f ’s outputs, we can suppose WLOG m = 1. Then, since
|f−1(0)|+ |f−1(1)| = 2n, we must have either |f−1(0)| ≥ 2n−1 or |f−1(1)| ≥ 2n−1; WLOG suppose
the former. Now, let X0 be the uniform distribution on f−1(0). Then

H∞(X0) = log

(
1

1/|f−1(0)|

)
= log(|f−1(0)|) ≥ log(2n−1) = n− 1 ≥ k,

so X0 is an (n, k)-source. But observe that f(X0) = 0, so that

ε ≥ ∆(f(X0),U1) = 1/2.

By contrapositive, if ε < 1/2 then no such f exists.

Given this result, if we want to find good extractors, we will have to supply them with additional
data.

3 A recovery: seeded extractors

Seeded extractors were introduced by Nisan & Zuckerman in 1996 [NZ96]. Essentially, seeded
extractors allow us to recover some of the properties of extractors we would like to have, at the
expense of allowing for a small random “seed”. They are defined as follows:

Definition 3.1. Let n, d,m ∈ N, ε > 0. A (k, ε)-seeded extractor is a map Ext : {0, 1}n×{0, 1}d →
{0, 1}m such that for all (n, k)-sources X we have Ext(X,Ud) ≈ε Um.

One would ideally like the seed length d << n.
Unlike the case above, good seeded extractors do exist. The random construction, in which

we simply choose Ext(x, y) uniformly (independently) for each (x, y) shows the existence of seeded
extractors with the following parameters:

m = k + d− 2 log(1/ε)−O(1),

d = log n+ 2 log(1/ε) +O(1).

A lot of research ahs focused on explicit constructions in the ’90s and ’00s, and now we have seeded
extractors with m = Ω(k), d = O(log(n/ε)).

An example of an explicit construction is given as follows. Use the seed to pick a hash function h
(from a family of 2-universal hash functions), then evaluate h on the sample from the weak source.
This gives excellent seeded exrractors in terms of output length, but suffers from the defect that
hash functions require lots of randomness to choose, so the seed must be taken very large.

In the following section, we consider ways to use seeded extractors to simulate BPP.

Lecture 25: Nov 23, 2021 4

4 Simulating BPP with seeded extractors as samplers.

A useful alternate perspective on seeded extractors is as samplers, defined as follows:

Definition 4.1. Let n,m, d, k ∈ N, ε, δ > 0. A map Samp : [N]→ [M]D is a (k, ε, δ)-sampler if for
all f : [M]→ {0, 1} and for all (n, k)-sources X,

Pr(y1,...,yD)=Samp(x),x←X

 ∣∣∣∣∣∣ 1

D

∑
i∈[D]

f(yi)− µf

∣∣∣∣∣∣ > ε

 < δ.

The correspondence between seeded extractors and samplers was discovered by Zuckerman
[Zuc97]. To see this correspondence, it is useful to view a seeded extractor as an (N,M)-bipartite
graph which is left D-regular, as depicted below. Using this view, output of a sampler on x ∈ [N] is
simply the neighbors of x in the bipartite graph. It was shown by Zuckerman that a (k, ε)-extractor
is a (k′, ε, δ)-sampler where δ = 2k−k

′
.

With this correspondence in hand, we can simulate BPP using weak sources, as follows: Let
L ∈ BPP, so that there exists a polytime PTM A(x, r) satisfying for all x ∈ {0, 1}∗

Pr[A(x, r) = L(x)] ≥ 2/3.

This is to say that at least 2/3 of all r ∈ {0, 1}m are “good” for A (i.e., A(x, r) = L(x)). Now
suppose that we only have access to a weak source (n, k)-source Y . We will construct a new
(polytime) randomized algorithm B that solves L using access to Y .

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k/2, ε)-seeded extractor; we can use it to get an
(k, ε, 2−Ω(k))-sampler S : {0, 1}n → [M]D. We denote by Si the ith (output) sample of S. Now,

Lecture 25: Nov 23, 2021 5

given an input x and a sample y from an (n,k)-source Y , the algorithm B runs A for D times to
compute:

b1 = A(x,Ext(y, S1)),

b2 = A(x,Ext(y, S2)),

...

bD = A(x,Ext(y, SD).

Finally, B will simply output the majority b of the bi’s.
It follows by the sampler property of seeded extractors (discussed above) that with probability

at least (1 − 2−Ω(k)) over y ∼ Y , at least 2/3 − ε of the bi will be “good” for A. Thus, taking
ε = 1/10, it follows that with probability 1 − 2−Ω(k) (over y), we have B(x, y) = L(x). B runs in
polynomial since we can use a seeded extractor with seed length O(log n).

References

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algo-
rithms, 11(4):345–367, 1997.

	Computing with defective randomness
	Min-entropy, extractors, and some bad news
	A recovery: seeded extractors
	Simulating BPP with seeded extractors as samplers.

