
CS 6810: Theory of Computing Fall 2021

Lecture 24: Sep 30, 2021

Lecturer: Eshan Chattopadhyay Scribe: James Meyers

1 Weak PCP Theorem

We continue our discussion of PCP’s and the PCP theorem by proving a weaker result, creating
a PCP using polynomial randomness and constant proof access that can decide the NP-complete
problem QUAD-SAT.

Definition 1.1. Given some n,m and a finite (m-length) sequence of n-ary functions S “ tPi :
Fn2 Ñ F2u, we say S P QUAD-SAT ðñ Da P Fn2 p@i ď m,Pipaq “ 0q. In other words, a set of
equations over Fn2 is in QUAD-SAT if it has a solution.

Theorem 1.2. QUAD-SAT is NP-complete.

Proof. A polynomial time verifier for QUAD-SAT simply takes an assignment a, and evalutates
each Pi at a, accepting if all values are 0. Given some instance of 3SAT, φ, we create a system of
quadratic equations. Let n be the number of variables xn in φ and let m be the number of clauses
in φ. Let variables a1...an be members of F2, creating one for each literal in φ.

For each i P r1..ms, there is some clause Ct of the form xi _ xj _ xk (negation can appear
anywhere or not at all). We turn each _ into a ` and each xk into 1´ak, producing an equation
as follows:

ct1ai ` ct2aj ` ct3p1´ akq “ 1

1´ ct1ai ´ ct2aj ´ ct3p1´ akq “ 0

Where in the above, ctk is some variable over F2 that is only present in this equation (so not
repeated in any other translated clauses). Assume there is an assignment making all translated
clause equations satisfied. Let the assignment to the 3SAT instance simply take the assignment for
the QUAD-SAT instance, turning 1 into true and 0 into false (we ignore the local variables ctk).
Then, since each translated clause is of the form 1´ a´ b´ c “ 0 for some a, b, c, we know at least
one of a, b, or c must be equal to 1. For any choice of the constants ctk, then, at least one of the
variables ai can be made to be equal to 1 (or such that p1 ´ aiq “ 1). Then in the corresponding
3SAT clause, the xi will be true (or xi will be), and thus φ is satisfiable.

Assume φ is satisfiable. If we take the satisfying assignment, using 1 for true and 0 for false,
we can clearly make each quadratic equation satisfied (with the correct choice for constants ctk).

This reduction is polynomial-time computable, as we create an equation of 6 variables for every
3-ary clause in a 3SAT instance. Thus, QUAD-SAT is NP-complete.

Theorem 1.3. Dc P NpNP Ď PCPpnc, Op1qqq

Proof. Given some L P NP. Because QUAD-SAT is NP-complete, we know L ďP QUAD-SAT.
So fix some polynomial computable reduction r such that @xpx P L ðñ fpxq P QUAD-SATq.
Now, we create a PCP system using polynomial randomness and constant queries to decide the
QUAD-SAT instance rpxq with perfect completeness and 1

2 soundness.

1

Lecture 24: Sep 30, 2021 2

Intuitively, we could think to take as proof a simple assignment vector a that we could then
use to check whether each QUAD-SAT equation evaluates to 0. However, we could never read an
entire assignment with a constant number of bits, so we must get a little more creative.

Given some collection of quadratic equations P1, P2, ..., Pm for some m, each acting on n vari-
ables. Quadratic equations over F2 can be written in a general form as follows: Σi,jďnci,jaiaj . So
any quadratic equation over n variables can then be written as a string of n2 bits e—we can let for
any k, erks be number representing the coefficient ck{{n,k%n which is multiplied by ak{{nak%n, with

{{ representing integer division. So, for any n, there are 2Opn
2q quadratic equations on n variables

operating over F2.
In our PCP system, we treat proofs π as the enumeration of each of the 2Opn

2q quadratic
equations evaluated on some assignment a, concatenated with the enumeration of each of the
2n linear functions evaluated on a. Then in general, to test whether an assignment satisfies our
equations P1 through Pm, we can simply check if their evaluation at a is zero for each. However,
we must come up with creative approaches to 1) ensure that the proof π does indeed encode the
evaluation of quadratic/linear equations on a singular assignment to n variables, and 2) that the
system of equations is actually satisfied. Both of these must also be checked with polynomial use
of randomness, and a constant number of queries.

So, the first bit is the value of the quadratic function with the lexicographically-smallest bit
representation, evaluated with variables a1, a2, ..., an assigned based on the values of the n-element
vector a. In general, this is a pair of Walsh-Hadamard encodings of a b a and a. With the
strings WHpab aq,WHpaq representing these encodings, we can think of them as truth tables to
functions f : t0, 1un

2
Ñ t0, 1u and g : t0, 1un Ñ t0, 1u. In general for such an encoding e, the value

epxq “ udx for any x and some u in t0, 1u|x|. Therefore, clearly f and g should be linear functions
(so for any x,y P t0, 1un, fpxq ` fpyq “ fpx ` yq). This property is beneficial in that it allows
us to check that the prover did indeed send a Walsh-Hadamard encoding of some assignment: if
either f or g is not linear, π cannot be such an encoding. And if they are both linear, then each
represents a Walsh-Hadamard encoding of evaluations of quadratic/linear functions, each on some
assignment (knowing that they are both linear does not ensure that they encode evaluations of the
same assignment—in fact, f being linear doesn’t ensure that it encodes evaluations of quadratic
functions. A linear f could simply represent evaluations of all linear functions on an assignment to
n2 distinct variables!).

To test the linearity of f and g with only constantly many queries, we can apply the BLR test.
In other words, we randomly choose two n-ary functions over F2, say qi and qj . If we have that
fpqiq`fpqjq ‰ fpqi`qjq, then we know that f cannot be linear. This test can be done in constant
queries, because for any function representation q, we know that its evaluation on the assignment
a should be located at the qth bit of π.

The probability that we reject a non-linear function f depends on its ”distance” from any linear
function. We can utilize the notion of the Hamming distance between truth tables of functions to
define ρ-close functions:

Definition 1.4. For any functions f : t0, 1un Ñ t0, 1u, g : t0, 1un Ñ t0, 1u, we say f and g are
ρ-close if

PrxPt0,1unrfpxq “ gpxqs ě ρ

The following claim is proved in the lecture 21 notes:

Claim 1.5. For any f : t0, 1un Ñ t0, 1u, there is some linear function that is ρ-close to f if

Prx,yPt0,1unrfpx` yq “ fpxq ` fpyqs ě ρ

Lecture 24: Sep 30, 2021 3

Claim 1.6. We can create a test that makes a constant number of queries, say for δ “ .01 that
ensures any f that is p1´ δq-close to a linear function is rejected with probability at least 1

2 .

Proof. Given some f , assume it is at most p1´δq-close to a linear function for some δ P p0, 12q. Then
the probability, ε, that a single BLR test accepts f is the probability that a randomly sampled x
and y satisfy the linearity condition, which is smaller than p1 ´ δq. For any δ P p0, 12q, we have
that because ε ď p1 ´ δq and δ P p0, 12q, ε ě δ. Then because in general, 1 ` x ď ex, we have
p1` xqk ď exk for positive k and p1` xq. So, we know

p1´ εq
2
δ ď e

´2ε
δ

ď e´2
ε

δ
ě 1 and ex monotone decreasing for ´ x

ă
1

2

Thus, we can design a BLR test rejecting any function f that is not p1 ´ δq-close to a linear
function with probability at least 1

2 . We repeat the random sampling of x and y for 2
δ iterations.

So then we can create a test that makes a constant number of queries, say for δ “ .01 satisfying
these properties.

So, the PCP verifier V should first test the linearity of f and g (as defined by the proof π).
Then, we have check that the evaluations of each of the P1, P2, ..., Pm on the assignment a are all
0. So, in general, we hope to be able to find the value fpxq for any x. Though we can reject any
functions greater than .99-close to linearity with high probability, it could be the case that f has
errors on some of the Pi functions. Thus, we need to ensure that we can ascertain the value of fpxq
with high probability and a constant number of queries.

The following claim is easy to obtain based on the distance of the Welsh-Hadamard code.

Claim 1.7. For any f̄ , ḡ, f with f .99-close to f̄ and ḡ and both f̄ and ḡ linear, it must be the case
that f̄ “ ḡ.

We use the above claim to ensure that we can retrieve the unique value of f̄pxq with high
probability. For any x P t0, 1un, we do the following. Choose some randomly sampled x̄ P t0, 1un.
Then by linearity of f̄ , it should be the case that f̄pxq “ f̄px̄ ` xq ` f̄px̄q (every x P F2 is
its own additive identity). By the .99 closeness of f̄ and f , we know that the probability that
f̄pxq ‰ fpxq ď .01. Thus by union bound, the probability that fpxq ‰ fpx̄` xq ` fpx̄q is at most
.02. So, from now on, when we refer to fpxq or gpxq, we can assume that we are utilizing this
self-correction and have the correct value with good probability.

After testing the linearity of f and g and ensuring that we can decode them with high probability,
we refer to f and g instead of the f̄ and ḡ (i.e., from now on, we assume f, g are both linear).

Note that ensuring that f is linear function only ensures that f on input q “ pqi,jq evaluates to
Σi,jbijqij for some matrix B (bij being the pi, jq’th entry). What we really want is to ensure that f
resembles a function of the form Σi,jaiajqij , where ai and aj are defined by the assignment a. In
other words, right now we can be confident that fpxq for any x is equal to uBvT , for some matrix
B, where u and v are used to generate coefficients qij . We want to know whether fpxq is close
to uaTavT . Both uaT and avT can be encoded as linear transformations on a, so we consult our
second Walsh Hadamard encoding.

For linear functions lu and lv, lupxqlvpxq “ plu ¨ lvqpxq. With f encoding quadratic equations
evaluated on the assignment a and g encoding linear equations evaluated on that assignment, it

Lecture 24: Sep 30, 2021 4

should be the case that fpx b yq “ gpxqgpyq for any x,y P t0, 1un. The tensor product x b y
represents coefficients of a quadratic equation on n variables (and thus the multiplication of two
linear functions represented by x and y). Since we know that f and g are both linear, we know
that @x P t0, 1un

2
, fpxq “ Wd x for some W, and @x P t0, 1un, that gpxq “ ad x for some u. So,

we must check that W “ ab a.
We can check this via 3 iterations of the following procedure:
Choose x and y randomly from t0, 1un. Query the proof π to retrieve the values fpx b yq,

gpxq and gpyq. Finally, ensure that fpx b yq “ gpxqgpyq, rejecting otherwise. For any linear
g and f , we have gpxqgpyq “ pa d xq ˚ pa d yq “ pa1x1 ` ... ` anxnq ˚ pa1y1 ` ... ` anynq “
pa21x1y1 ` a1x1a2y2 ` ...` a

2
nxnynq “ pab aq d pxb yq “ fpxb yq. So, for any linear f and g with

W “ ab a, we reject with probability 0.
Assume W ‰ ab a. We have that

fplx ¨ lyq ´ gplxq ¨ gplyq “ Σi,jWi,jxiyj ´ Σi,jaiajxiyj

“ Σi,jpWi,j ´ aiajqxiyj

With fixed values for x and y, we know that there must be some i, j such that Bi,j ´ aiaj ‰ 0. As
we showed earlier, for any linear f and g that are not equal, they differ on at least half of their
inputs. Then because W ‰ a b a (and both encode linear transformations), with probability 1

2 a
random x satisfies xW ‰ xpa b aq. Then, with a further 1

2 probability (so total 1
4), a randomly

sampled y satisfies xWy ‰ xpa b aqy. So for 3 independent trials, if W ‰ a b a, we reject with
probability 3

4 .
Finally, if we have not rejected yet, we know that f and g are both linear and do indeed encode

the evaluation of all quadratic and linear equations over F2 on some assignment a. So, now we
need only check that the system of equations is satisfiable. Ideally, we could test every of the m
quadratic equations at a, but this would require m queries, which need not be constant. Instead,
we can test a single random linear combination of all of the quadratic equations—if they are all
satisfied, we should get a 0, and this only requires a single query!

Consider the function M mapping all linear combinations of P1, ..., Pm to their evaluation at
a. There are 2m such equations, so M has 2m inputs. We are now simply checking if M is equal
to the zero function. M is clearly linear (note that a linear combination of quadratics is equal to
simply another linear combination of those same quadratics). Therefore, if M ‰ 0, they must differ
on at least half of their inputs and thus for a randomly sampled linear combination, we reject with
probability 1

2 . So we perform 2 such samplings and queries, ultimately rejecting with probability
at least 3

4 .
Now, we summarize the proof of completeness and soundness. First, assume we are given a

satisfiable instance of QUAD-SAT. Then because a satisfying assignment a will ensure that each
Pi is 0, we can take as proof π the WH encoding of a and ab a. The BLR test will never reject a
linear function, and neither will the test ensuring that g and f are consistent. We also know that
because each Pi evaluated at a is zero (and because f is actually linear), any linear combination
will also equal 0. So, we accept yes instances with probability 1.

Assume we are given some unsatisfiable instance. If the functions f and g are not linear, as
explained above, we can reject either with probability 1

2 , repeating the test r times to achieve
rejection with probability 1´2´r for any (constant) r. If f and g are both .99-close to linear but f
does not encode the tensor product of the vector encoded by g, we know we reject with probability
3
4 , shown above. If we pass both the linearity and decoding tests, we know the test on the function
M as described above will reject with probability at least 3

4 because any assignment a will not be
able to satisfy at least one linear combination of Pi’s (because we have a no instance). So, on no
instances, we reject with probability at least 1

2 .

Lecture 24: Sep 30, 2021 5

Note that for the BLR test, we perform constantly-many queries (based on the desired closeness
of f and g to linearity), Op1q queries for the test that f encodes the tensor product of the vector
encoded by g, and Op1q queries to check if the assignment is satisfying. Randomness is only used
to sample polynomially-sized vectors, so we use polynomially many random bits.

This concludes the proof that NP Ď PCP ppolypnq, Op1qq.

	Weak PCP Theorem

