
CS 6810: Theory of Computing Fall 2021

Lecture 23: Nov 16, 2021

Lecturer: Jyun-Jie Liao Scribe: Ricky Shapley

1 Circuit Lowerbounds

In studying circuits one of our ultimate goals is to show that NP ⊈ P/poly, as this implies that
P ̸= NP. To do this, ideally we want to find a function f ∈ NP, that is not contained in P/poly,
or in other words, a function where size(f) is superpolynomial.

But the best current result we know is that we can find f ∈ P where size(f) ≥ 5n− o(n) [3][2].
So instead of working on P/poly, we will work on a simpler class of circuits: AC0. Today we

will show that Parity /∈ AC0.

Definition 1.1 (AC0). We say a circuit family is in AC0 if it has constant depth, has unbounded
fan-in (and fan-out), and has polynomial size. We say a circuit family is in AC0(s(n), d) if it has
size ≤ s(n) and depth ≤ d.

For example, any CNF is in AC0, because it can be expressed as a depth 2 circuit.

Definition 1.2 (Parity). We define the parity function
⊕

as
⊕

(x1, . . . , xn) =
∑n

i=1 xi mod 2.

The best result we know about Parity is that
⊕

/∈ AC0(2O(n
1

d−1), d) by H̊astad[1]. But
today, we will prove the slightly weaker result by Razborov[4] and Smolensky[5], that

⊕
/∈

AC0(2O(n
1
2d), d). Both of these results indicate that Parity /∈ AC0, as any constant depth circuit

calculating parity would require exponential size.
To prove this, we will prove the following two claims:

1. ∀C ∈ AC0 and ∀n, there is a degree k polynomial g over F3 satisfying

Pr
x∈{0,1}n

[Cn(x) = g(x)] ≥ 0.99

where we will later choose k to be
√
n.

2.
⊕

cannot be approximated by a degree
√
n polynomial. Formally, ∀ degree k polynomials h

over F3,

Pr
x
[
⊕

(x) = h(x)] < 0.99.

To prove the first claim, we will construct a polynomial gadget (over F3) for every logical gate.
Given a function f(x) with boolean value, we can pass it through a NOT gate and the write the
result as 1−f(x). For an AND gate, we can take the product of the boolean valued input functions.
And for an OR gate, we can use De Morgan’s laws to express the output. But this formulation
has the problem that in our AND and OR gadgets, the degree of our polynomial is too large. So
instead, we will use randomness to create a good approximation.

We will describe how to represent an OR gate over input functions f1, . . . , ft. Then, we randomly
sample a set S ⊆ [t], where each element of [t] is chosen with probability 1/2. Then,

Pr
S

[∑
i∈S

fi ̸= 0 mod 3

]
≥ 1

2

1

Lecture 23: Nov 16, 2021 2

if any fi = 1. To see this, we partition all subsets of [t] into those containing i and those not
containing i. Then there is a natural bijection between the two of pairs of subsets: a set T ⊆ [t]
not containing i and the set T ∪ {i}. Since fi = 1,

∑
j∈T fj and

∑
j∈T∪{i} fj must differ by 1 and

cannot both be 0. And since all subsets can be chosen with equal probability, the total probability
that the sum is non-zero must be at least 1/2.

By squaring, this statement becomes

Pr
S

(∑
i∈S

fi

)2

= 1 mod 3

 ≥ 1

2
.

Again, we can use De Morgan’s laws to construct AND gates with the same degree.
Now, let gS =

(∑
i∈S fi

)2
. Our above result indicates that

∀x, Pr
S

[
gS(x) =

∨
i

fi(x)

]
≥ 1

2

as if all fi(x) are 0, then gS always outputs 0. But we want to minimize the error rate, which we
can do by repetition. For r samples of S, (labeled S1, . . . , Sr), we will let

g = 1−
r∏

i=1

(1− gSi).

Then, if any gSi correctly outputs 1, then g will output 1. So this gives us a probability of error of
2−r for an OR gate. And deg(g) ≤ 2r ·max(deg(fi)).

So for a polynomial gC that approximates the entire circuit C using the gadget we described
above, deg(gC) ≤ (2r)d, since at each level in our circuit, the degree increases by at most a factor
2r, and we begin on the first level with degree 1 polynomials (x1, . . . , xn).

By using a union bound over all the gates in the circuit C, we get that

∀x, Pr
gC

[gC(x) = C(x)] ≥ 1− s(n)

2r
.

And we can take r = O(log(s(n)) to achieve the desire 0.99 bound.
This means that

E
x,gC

[1{gC(x) = C(x)}] ≥ 0.99

∃gC s.t. E
x
[1{gC(x) = C(x)}] ≥ 0.99

∃gC s.t. Pr
x
[gC(x) = C(x)] ≥ 0.99

as desired.

And we have our k = deg(gC) ≤ O(log(s(n)))d. So as long as we have s(n) = 2O(n
1
2d), we have

k ≤
√
n.

Now we will prove the second claim (that
⊕

cannot be approximated by a degree
√
n polynomial

in F3.

Lecture 23: Nov 16, 2021 3

Let’s suppose for a contradiction that there is some function h such that deg(h) ≤
√
n and

Prx[
⊕

(x) = h(x)] ≥ 0.99. We construct the set G = {x ∈ {0, 1}n : h(x) =
⊕

(x)}. And by our
supposition, |G| ≥ 0.99 · 2n. Now we will show that this is impossible.

Consider the bijective mapping of {0, 1} to {1,−1}, where if xi = 0, then yi = 1, and if xi = 1,
then yi = −1. Then if we call

⊕′ the parity function on our translated variables, we have

⊕
(x) =

⊕′(y) =

(
n∏

i=1

yi

)
− 1

We can also translate the function h on to the function h′ on {1,−1}. Then h(x) = h′(y), and
the degree of h′ should be no more than the degree of h, since h(x) on xi = yi − 1 gives us h′(y).

We will also convert G to G′ ⊆ {1,−1}. Let G′ = {y ∈ {1,−1}n : h′(y) =
⊕′(y)}.

Consider an arbitrary function F : G′ → F3. We claim that there is a polynomial p such that
for all y ∈ G′, p(y) = F (y) and deg(p) ≤ n/2 +

√
n.

The first claim is that for any F , we can find some polynomial f : Fn
3 → F3 such that ∀y ∈ G′,

f(y) = F (y). We can use a product of n degree 1 terms to check if our input matches a particular
y and multiply by F (y). Taking the sum over all such terms produces such a polynomial. Each
monomial of this f could have up to degree n (each yi appearing once). So to reduce the degree,
if we see the monomial y1y2 . . . yn, we can replace it with h′(y). And similarly if a monomial has
degree more than n/2, we replace it with h′(y)

∏
i∈M yi where M is the set of indices missing from

the monomial. (Remember that y ∈ {1,−1}, so multiplying by yi is equivalent to factoring it out.)
By doing this, since h′(y) has degree at most

√
n, the degree of our resulting polynomial is no more

than n/2 +
√
n.

There are 3|G
′| functions from G′ to F3, and all of them can be represented by polynomials of

degree at most n/2 +
√
n. So

3|G
′| ≤ 3

∑n/2+
√

n
i=0 (ni)

where the right term is the number of such polynomials. For large enough n (which by my calcu-

lations is n ≥ 83), we have
∑n/2+

√
n

i=0 < 0.99 · 2n, and hence |G| = |G′| < 0.99 · 2n, a contradiction.
This completes our proof.

References

[1] Johan H̊astad. Computational limitations of small-depth circuits. 1987.

[2] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n- o (n) for boolean circuits. In
International Symposium on Mathematical Foundations of Computer Science, pages 353–364.
Springer, 2002.

[3] Oded Lachish and Ran Raz. Explicit lower bound of 4.5 n-o (n) for boolena circuits. In
Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages 399–
408, 2001.

[4] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

[5] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit com-
plexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 77–82, 1987.

	Circuit Lowerbounds

