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In which we further study the connection between PCPs and hardness of approximation, and
introduce the BLR linearity test.

1 Recap and overview

Probabilistically checkable proofs and the PCP theorem In the previous lecture, we intro-
duced probabilistically checkable proofs (PCPs), a new type of (non-interactive) proof system which
has surprising connections to: (1) the complexity class NP; and (2) hardness of approximation. In
this lecture, we revisit the definition of PCPs and further explore these connections.

We start by recalling the verifier-based definition of the complexity class NP, which says that a
language L ⊆ {0, 1}∗ is in NP if membership in L can be efficiently and deterministically verified .
One way to formalize this is to say that L ∈ NP if there exists a (deterministic) poly-time machine
V such that for any x ∈ {0, 1}∗, the following holds.

• Completeness: x ∈ L =⇒ there exists a “proof” π ∈ {0, 1}∗ such that V π(x) = 1.

• Soundness: x /∈ L =⇒ for all “proofs” π ∈ {0, 1}∗ it holds that V π(x) = 0.

Above, recall that V π denotes the machine V with oracle/query access (i.e., random access) to π.
The complexity class PCP, on the other hand, is simply the collection of all languages L ⊆ {0, 1}∗

for which membership in L can be efficiently and probabilistically verified. The verifier V is now
allowed to use randomness, and we simply require that completeness and soundness hold with
sufficiently high probability (over the randomness of V ).

We are now ready to recall the formal definition of the complexity class PCP. Beyond the
above requirements, it will be useful to quantify the exact number of random bits r used by the
verifier V , in addition to the number of queries q made by the verifier V to the proof π. We will
eventually see that, depending on the settings of these parameters, PCPs will provide surprising
new characterizations of several complexity classes.

Definition 1.1 (Complexity class PCPc,s(r, q)). For any r, q : N → N and 0 ≤ s ≤ c ≤ 1, we define
the class PCPc,s(r, q) as follows. For any language L ⊆ {0, 1}∗, we say that L ∈ PCPc,s(r, q) iff
there exists a probabilistic poly-time verifier V such that for any x ∈ {0, 1}∗, the following holds.

• Completeness: x ∈ L =⇒ there exists some π ∈ {0, 1}∗ such that Pr[V π(x) = 1] ≥ c.

• Soundness: x /∈ L =⇒ for all π ∈ {0, 1}∗ it holds that Pr[V π(x) = 1] ≤ s.

• Efficiency: V uses at most r(|x|) bits of randomness and makes at most q(|x|) queries to π.

Remark 1.2. For convenience, we use the shorthand PCP(r, q) := PCP1,1/2(r, q). Furthermore, we
will occasionally abuse notation and write PCP(R,Q) for some function families R,Q; we define
this class as PCP(R,Q) :=

⋃
r∈R,q∈Q PCP(r, q).

1



Lectures 21 & 22: November 9 & 11, 2021 2

Given the above definitions, it is immediate that NP = PCP1,0(0, poly(n)). Suprisingly, however,
it turns out that by providing the PCP verifier with just a few bits of randomness (and slightly
relaxing the soundness requirement), PCPs offer another characterization of NP in which the PCP
verifier only needs to read a constant number of bits from the proof. This landmark result is known
as the PCP Theorem, and was proven by Arora and Safra [AS98] and Arora, Lund, Motwani,
Sudan, and Szegedy [ALM+98].

Theorem 1.3 (The PCP Theorem [AS98, ALM+98]).

NP = PCP(O(log n), O(1)).

It is not difficult to show1 that NP ⊇ PCP(O(log n), O(1)), and thus the PCP theorem often
simply refers to the inclusion NP ⊆ PCP(O(log n), O(1)). Indeed, it is also this direction of the theo-
rem that yields the following fascinating philosophical takeaway: if a given mathematical statement
admits a proof that can be efficiently and deterministically verified, then it also admits a proof that
can be efficiently verified by checking just a constant number of (random) locations in the proof.2

Overview Beyond the above fascinating philosophical takeaway, the PCP theorem has surprising
applications in hardness of approximation. We will start by exploring these applications in Section 2.
Then, in Section 3 we move towards proving (a weaker version of) the PCP theorem. A key tool in
this proof is the BLR linearity test, which is an efficient algorithm for testing whether a function
is linear. We introduce this tool and prove its correctness in Section 3, and we will use it to prove
the weak PCP theorem (Theorem 3.1) in the next lecture.3

2 The connection between PCPs and hardness of approximation

As it turns out, the PCP theorem has important applications in hardness of approximation. In
fact, the PCP theorem is actually equivalent to a statement about the hardness of approximating
the solution to a specific problem. In this section, we formally describe and prove this equivalence.

Constraint satisfaction problems The exact problem that will witness this equivalence is a
generalization of the classical 3SAT problem, in which (1) the clauses may be replaced with arbitrary
functions that depend on a limited number of variables; and (2) we become interested in the
maximum fraction of clauses that can be satisfied, not just whether all of them can be satisfied. To
make things more formal, we introduce general boolean formula known as q-Constraint Satisfaction
Problems (qCSPs).

Definition 2.1 (qCSP). A qCSP over n variables with m clauses is a sequence ϕ = (ϕ1, . . . , ϕm),
where each clause ϕi : {0, 1}n → {0, 1} is a boolean function that depends on at most q of its input
bits. For every x ∈ {0, 1}n we define valx(ϕ) :=

1
m

∑
i∈[m] ϕi(x) to be the number of clauses satisfied

by x. We let val(ϕ) := maxx valx(ϕ), and we say that ϕ is satisfiable if val(ϕ) = 1.

1Indeed, the more general result PCP(r, q) ⊆ NTIME(2O(r) · q ·nO(1)) can be proven as follows. First, observe that
the proofs read by the PCP verifier may be assumed to have length at most 2rq, since the PCP verifier checks at
most q locations of the proof for each of the 2r possible fixings of its randomness. Then, have the NTIME verifier
simulate the PCP verifier on all 2r possible fixings of its randomness and accept iff the PCP verifier always accepts.

2Here, we are referring to the language L which contains all strings x ∈ {0, 1}∗ that are mathematical statements
which have polynomial sized proofs written in a way that can be formally verified by a single poly-time verifier (e.g.,
a human). Clearly L ∈ NP, and the PCP theorem thus implies L ∈ PCP(O(logn), O(1)).

3Actually, this will happen in Lecture 24, as the next lecture will be a guest lecture on a different topic.
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Remark 2.2. Observe that we may always assume ϕ is encoded using poly(n,m, 2q) bits, since
each ϕi can be written as a boolean function ϕi : {0, 1}q → {0, 1}, and there are 22

q
such functions.

We will see that the PCP theorem is equivalent to a theorem which roughly asserts that val(ϕ)
of a qCSP ϕ cannot even be approximated (unless P = NP). Towards this end, we must first review
the notions of approximation algorithms and promise problems.

We start by defining MAX-qCSP as the optimization problem of determining val(ϕ) of a qCSP
ϕ. Then, for any 0 ≤ ρ ≤ 1, recall that A is a ρ-approximation algorithm for MAX-qCSP if A runs
in poly-time and

ρ · val(ϕ) ≤ A(ϕ) ≤ val(ϕ)

for any qCSP ϕ.
We now need a formal way to assert the non-existence of certain approximation algorithms for

MAX-qCSP. For this, we need the notion of promise problems. Recall that a promise problem is
simply a tuple L = (LYes, LNo) of disjoint sets LYes, LNo ⊆ {0, 1}∗. We say that an algorithm decides
the promise problem if it accepts all inputs x ∈ LYes and rejects all inputs x ∈ LNo. On the other
hand, for inputs x /∈ LYes ∪ LNo, the algorithm is allowed to reject or accept (as long as it halts).
Promise problems naturally generalize decision problems, which require that LYes ∪ LNo = {0, 1}∗.
We will be interested in the following problem.

Definition 2.3 (ρGAP-qCSP). The promise problem ρGAP-qCSP is the tuple L = (LYes, LNo),
defined as

LYes := {ϕ ∈ {0, 1}∗ : ϕ is a qCSP with val(ϕ) = 1}
LNo := {ϕ ∈ {0, 1}∗ : ϕ is a qCSP with val(ϕ) ≤ ρ}

We say that the promise problem ρGAP-qCSP = (LYes, LNo) is NP-hard if for any language
L ∈ NP, there exists a poly-time computable function f : {0, 1}∗ → {0, 1}∗ such that the following
holds for all x ∈ {0, 1}∗: if x ∈ L then f(x) ∈ LYes, and if x /∈ L then f(x) ∈ LNo. We now proceed
by showing the connection between the (non)existence of approximation algorithms for MAX-qCSP
and the NP-hardness of ρGAP-qCSP, and then show the equivalence of the PCP theorem to the
NP-hardness of ρGAP-qCSP. As a result, we obtain a deep connection between the PCP theorem
and hardness of approximation.

Claim 2.4. If ρGAP-qCSP is NP-hard, then for all ρ′ > ρ, there cannot exist a ρ′-approximation
algorithm for MAX-qCSP (unless P = NP).

Proof. Assume that the promise problem ρGAP-qCSP = (LYes, LNo) is NP-hard and that there
exists a ρ′-approximation algorithm A for MAX-qCSP, for some ρ′ > ρ. To prove the claim, it
suffices to show that this implies P = NP.

Fix any language L′ ∈ NP, and note that by the NP-hardness of ρGAP-qCSP there exists a
poly-time computable function f such that x ∈ L′ =⇒ f(x) ∈ LYes and x /∈ L′ =⇒ f(x) ∈ LNo.
Now, consider an algorithm B which takes its input x ∈ {0, 1}∗ and outputs 1 iff A(f(x)) > ρ.
Notice that B clearly runs in poly-time, and furthermore that it decides L′. To see why the latter
holds, simply observe that if x ∈ L′ then f(x) ∈ LYes and thus val(f(x)) = 1. By definition of A,
we get that A(f(x)) ≥ ρ′ ·1 > ρ, and thus B accepts. On the other hand, if x /∈ L′ then f(x) ∈ LNo

and thus val(f(x)) ≤ ρ. By definition of A, we get that A(f(x)) ≤ ρ and thus B rejects. Thus
L′ ∈ P, which implies that NP ⊆ P and thus P = NP.
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The equivalence Finally, we are ready to state and prove the equivalence between the PCP
theorem and hardness of approximation.

Theorem 2.5. The following two statements are equivalent.

1. The PCP theorem: There exist constants 0 ≤ ρ < 1 and q ∈ N such that

NP = PCP1,ρ(O(log n), q).

2. Hardness of approximation: There exist constants 0 ≤ ρ < 1 and q ∈ N such that

ρGAP-qCSP is NP-hard.

Before we prove this equivalence, we must make some remarks. First, we point out that the PCP
theorem written in Theorem 2.5 is slightly different than the PCP theorem written in Theorem 1.3.
However, it is not difficult to show that these two PCP theorems are equivalent.4 Next, we remark
that while we will prove the Equivalence Theorem 2.5, the main challenge is actually proving
that one of the statements listed in Theorem 2.5 is true. Finally, we emphasize the hardness of
approximation results obtained through combining this equivalence theorem with the PCP theorem.
In particular, note that by combining Theorem 2.5 with Theorem 1.3 and Claim 2.4, we obtain the
following corollary.

Corollary 2.6. There exist constants 0 ≤ ρ < 1 and q ∈ N such that the following holds. There
does not exist a ρ-approximation algorithm for MAX-qCSP (unless P = NP).

Thus, we have finally seen how the PCP theorem yields hardness of approximation results
against a specific problem: MAX-qCSP. To obtain hardness of approximation results against an-
other problem P, all that is needed is a so-called approximation-preserving reduction from MAX-
qCSP to P. Following the proof of the PCP theorem, a collection of papers have developed a rich
theory around such reductions, and have subsequently proved near-optimal hardness of approxi-
mation results for several classical problems in computer science.

Finally, we conclude this section by proving Theorem 2.5 via the following two claims.

Claim 2.7. Suppose there exist constants 0 ≤ ρ < 1 and q ∈ N such that NP = PCP1,ρ(O(log n), q).
Then it follows that ρGAP-qCSP is NP-hard for the same constants ρ, q. In short,

NP = PCP1,ρ(O(log n), q) =⇒ ρGAP-qCSP is NP-hard.

Claim 2.8. Suppose that there exist constants 0 ≤ ρ < 1 and q ∈ N such that ρGAP-qCSP is
NP-hard. Then it follows that NP = PCP1,ρ(O(log n), q) for the same constants ρ, q. In short,

ρGAP-qCSP is NP-hard. =⇒ NP = PCP1,ρ(O(log n), q).

Clearly, Theorem 2.5 follows immediately from Claim 2.7 and Claim 2.8. In fact, these claims
prove something slightly stronger: that the constants ρ, q appearing in the first item of Theorem 2.5
are identical to those appearing in the second item. This draws equivalences between (1) the
soundness ρ of the PCP system and the approximation gap ρ of the promise problem ρGAP-qCSP;
and (2) the query complexity q of the PCP system and the arity q of ρGAP-qCSP, i.e., the number
of variables that each clause depends on.

We now prove Claim 2.7.

4In particular, note that we can always do error reduction on the soundness parameter ρ if it is greater than 1/2;
and we can fix the query parameter O(1) to a universal constant q by reducing each NP language to 3SAT before
constructing a PCP verifier.
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Proof of Claim 2.7. Assume that there exist constants 0 ≤ ρ < 1 and q ∈ N such that NP =
PCP1,ρ(O(log n), q). We wish to show that ρGAP-qCSP = (LYes, LNo) is NP-hard: that is, we must
show that for every language L′ ∈ NP, there exists a poly-time computable function f : {0, 1}∗ →
{0, 1}∗ such that x ∈ L′ =⇒ f(x) ∈ LYes and x /∈ L′ =⇒ f(x) ∈ LNo.

Towards this end, fix any L′ ∈ NP. Since NP = PCP1,ρ(O(log n), q), there must be some
constant C such that L′ ∈ PCP1,ρ(C log n, q). And by definition of PCP, we know that there is a
(probabilistic) poly-time verifier V such that for all x ∈ {0, 1}∗, the following hold.

• Completeness: x ∈ L′ =⇒ ∃π ∈ {0, 1}∗ such that Pr[V π(x) = 1] = 1.

• Soundness: x /∈ L′ =⇒ ∀π ∈ {0, 1}∗ it holds that Pr[V π(x) = 1] ≤ ρ.

• Efficiency: V uses at most C log |x| bits of randomness and makes at most q queries to π.

Without loss of generality, we may assume the proofs π queried by the verifier V have length
exactly L := 2C log |x|q, since V checks at most q locations of the proof for each of the 2C log |x|

possible fixings of its randomness. Furthermore, notice that for any input x ∈ {0, 1}∗ and any
fixing r̃ ∈ {0, 1}C log |x| of the verifier’s randomness, the verifier becomes a deterministic function
becomes a deterministic function of at most q symbols in the proof π. Let ϕx,r̃ : {0, 1}L → {0, 1}
denote this function, which depends on ≤ q of its inputs, and let ϕx = (ϕx,r̃)r̃∈{0,1}C log |x| denote the
collection of these functions over all r̃. Clearly, ϕx is a qCSP. Furthermore, by the completeness
and soundness of the PCP verifier V , we know:

x ∈ L′ =⇒ ∃π such that Pr[V π(x) = 1] = 1 =⇒ val(ϕx) = 1

x /∈ L′ =⇒ ∀π it holds that Pr[V π(x) = 1] ≤ ρ =⇒ val(ϕx) ≤ ρ.

We are now ready to construct our poly-time computable function f : {0, 1}∗ → {0, 1}∗. Given
as input any x ∈ {0, 1}∗, our function f iterates over all r̃ ∈ {0, 1}C log |x|, simulating the verifier V
on fixed x, r̃ to collect the functions ϕx,r̃, which are over the (unfixed) proof symbols. Then, the
function f outputs ϕx = (ϕx,r̃)r̃∈{0,1}C log |x| . Since the verifier V runs in poly(|x|) time and the proof
has length L = poly(|x|), each function ϕx,r̃ can be built in poly(|x|) time via a Cook-Levin-type
argument. And since there are 2C log |x| = poly(|x|) such functions ϕx,r̃ in ϕx, we see that ϕx can be
built in poly(|x|) time and thus f is a poly-time computable function.

Now, recall that we showed above that x ∈ L′ =⇒ val(ϕx) = 1. Since f(x) = ϕx, we get
that val(f(x)) = 1. By definition of ρGAP-qCSP (Definition 2.3), this implies that f(x) ∈ LYes.
Similarly, we have x /∈ L′ =⇒ val(ϕx) ≤ ρ =⇒ val(f(x)) ≤ ρ =⇒ f(x) ∈ LNo. Thus, we have
proven the efficiency and correctness requirements of f , thereby showing it is a poly-time reduction
from L′ to ρGAP-qCSP. Since we picked an arbitrary L′ ∈ NP, we get that ρGAP-qCSP is NP-hard,
as desired.

Finally, we conclude our proof of Theorem 2.5 by proving Claim 2.8.

Proof of Claim 2.8. Assume that there are constants 0 ≤ ρ < 1 and q ∈ N such that ρGAP-
qCSP = (LYes, LNo) is NP-hard. In other words, for every L′ ∈ NP there is a poly-time computable
function f : {0, 1}∗ → {0, 1}∗ such that x ∈ L′ =⇒ f(x) ∈ LYes and x /∈ L′ =⇒ f(x) ∈
LNo. We wish to show that NP = PCP1,ρ(O(log n), q). As mentioned earlier in these notes, it
is easy to show PCP1,ρ(O(log n), q) ⊆ NP for constant q. Thus, all that remains is to prove
NP ⊆ PCP1,ρ(O(log n), q).

Fix any L′ ∈ NP, and let f : {0, 1}∗ → {0, 1}∗ be the poly-time computable function with
x ∈ L′ =⇒ f(x) ∈ LYes and x /∈ L′ =⇒ f(x) ∈ LNo. We now construct a PCP verifier Ṽ as
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follows. On input x ∈ {0, 1}∗, it first computes the qCSP ϕx := f(x). Suppose ϕx is over t variables
and m clauses ϕx,1, . . . , ϕx,m. The PCP verifier Ṽ then picks a (uniformly) random index i ∼ [m],
examines the clause ϕx,i, and records the ≤ q input coordinates on which it depends.5 Finally, the
verifier queries its proof π at locations πj1 , . . . , πjq and outputs ϕx,i(πj1 , . . . , πjq).

6

We claim that Ṽ is an efficient, complete, and sound PCP verifier for L′, and thus L′ ∈
PCP1,ρ(O(log n), q). To see why, we first observe that Ṽ runs in (probabilistic) polynomial time,
since f runs in poly-time. Furthermore, the latter also implies that m = poly(|x|), and thus the
verifier Ṽ uses logm = log poly(|x|) = O(log(|x|)) bits of randomness. Since the verifier clearly
queries the proof at ≤ q locations, we conclude that our verifier Ṽ is efficient.

To see why Ṽ has completeness, consider any x ∈ L′ and the qCSP ϕx := f(x) over (say) t
variables. By definition of f , we know that ϕx ∈ LYes, which means val(ϕx) = 1. Thus there must
be some assignment π ∈ {0, 1}t such that ϕx,i(π) = 1 for every clause ϕx,i in ϕx. Give such an

assignment π as an oracle, it is clear that Ṽ π(x) will output 1 with probability 1, since π satisfies
each clause in ϕx. Thus

x ∈ L′ =⇒ ∃π ∈ {0, 1}∗ such that Pr[V π(x) = 1] = 1,

and completeness holds.
To see why Ṽ has soundness, consider any x /∈ L′ and the qCSP ϕx := f(x) over (say) t

variables. By definition of f , we know that ϕx ∈ LNo, which means val(ϕx) ≤ ρ. In other words,
for any assignment π ∈ {0, 1}t it holds that ϕx,i(π) = 1 for at most ρ fraction of the clauses ϕx,i in

ϕx. Thus for any assignment π as an oracle, it is clear that Ṽ π(x) will output 1 with probability
at most ρ, since this is the maximum probability that a randomly selected clause in ϕx is satisfied
by π. Thus

x /∈ L′ =⇒ ∀π ∈ {0, 1}∗ it holds that Pr[V π(x) = 1] ≤ ρ,

and soundness holds.
Thus, we conclude that Ṽ is an efficient, complete, and sound PCP verifier for L′, and thus L′ ∈

PCP1,ρ(O(log n), q). Since we picked an arbitrary L′ ∈ NP, we get that NP ⊆ PCP1,ρ(O(log n), q),
as desired.

3 The weak PCP theorem and the BLR linearity test

The weak PCP theorem In the previous section, we saw that PCPs have a deep connection
to hardness of approximation. Given this connection, we would now like to actually prove the
PCP theorem (Theorem 1.3), so that we might unlock the hardness of approximation applications
implied by Theorem 2.5 and Corollary 2.6. Due to time constraints, however, we will not be able to
cover the full proof of the PCP theorem. Instead, we set out to prove the following weaker version.

Theorem 3.1 (The Weak PCP Theorem).

NP ⊆ PCP(poly(n), O(1)).

While the weak PCP theorem will not be strong enough to yield applications in hardness of
approximation, its proof is enlightening and contains some similar ingredients to the proof of the

5We assume the definition of qCSP has the encoding of such a formula include this information in each clause.
6Technically, the latter is abuse of notation, as our definition of qCSP had each clause as a deterministic function

of all the t variables (instead of just q), and just depend on q of them. We can easily rectify this by plugging in
arbitrary bits into the input locations on which ϕx,i does not depend.
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actual PCP theorem. One such ingredient is the BLR linearity test. In the remainder of this
section, we introduce this test and prove its correctness. In Lecture 24, we will show how to use
this test to prove Theorem 3.1.

Property testing Before we discuss the BLR linearity test, we must introduce the field of
property testing. In this area, one studies the question of whether some property of an unknown
function f : {0, 1}n → {0, 1} can be determined using just a few queries into that function. To
make things more formal, if we let F denote the set of all boolean functions f : {0, 1}n → {0, 1},
then a property P is simply a subset P ⊆ F . At a high level, we would like to construct an efficient
algorithm A that, given oracle access to an unknown function f , can efficiently check whether f
has property P. Here, efficiency is measured by the number of queries to f made by A, and we are
not concerned about the runtime of A.

Clearly, we can always construct an algorithm A that determines whether f ∈ P by making 2n

queries to f (i.e., at each of its input points). On the other hand, it is not difficult to construct
simple properties for which 2n queries are necessary: for example, take any property P for which
membership f ∈ P depends on its evaluation for every input x. To cope with this, we make two
relaxations: (1) we allow the tester A to use unlimited randomness; and (2) we only require the
tester A to succeed with sufficiently high probability. Furthermore, we tailor our definition of
“sufficiently high probability” to allow the tester A to fail if f doesn’t have property P, but is
extremely close to having it.

Given this intuition, we are almost ready to formally define a property tester A. First, we
just need to formalize the notion of “closeness” of a function f to a property F . Given functions
f, g : {0, 1}n → {0, 1}, we define the distance dist(f, g) between them as the normalized Hamming
distance between their truth tables:

dist(f, g) := Pr
x∼{0,1}n

[f(x) ̸= g(x)].

That is, dist(f, g) counts the fraction of inputs on which f, g differ. Next, we define the distance of
f from a property P as its distance to the closest g ∈ P:

dist(f,P) := min
g∈P

dist(f, g).

We are now ready to formally define a property tester.

Definition 3.2 (Property tester). Fix any functions q : N → N and λ : N → R+, and any
property P. We say that a (randomized) algorithm A is a (q, λ)-tester for P if for every function
f : {0, 1}n → {0, 1}, all of the following hold:

• Completeness: f ∈ P =⇒ Pr[Af = 1] = 1.

• Soundness: f /∈ P =⇒ Pr[Af = 0] ≥ λ(n) · dist(f,P).

• Efficiency: A makes at most q(n) queries to f .

Property testing is a beautiful subfield of theoretical computer science, and many results in
the field rely on cool structural results from combinatorics, such as the graph removal lemma and
Szemerédi’s regularity lemma. Typically, one hopes to construct good tests for global properties
of boolean functions, using very little local information (i.e., one hopes to construct (q, λ)-testers
where q, λ are constants). For a detailed introduction to property testing, we refer the reader to
the excellent book of Goldreich [Gol17].
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The BLR linearity test Now that we have given a brief introduction to property testing, we
are ready to define the BLR linearity test. This property tester, introduced by Blum, Luby, and
Rubinfeld [BLR93], will be crucial to our proof of the weak PCP theorem. To formally introduce
the BLR test, we must first define what it means for a function f : {0, 1}n → {0, 1} to be linear.
Here, we define f to be linear if for all x, y ∈ {0, 1}n it holds that f(x) + f(y) = f(x+ y), where +
refers to addition modulo 2 (i.e., over F2). We define LIN to be the collection of all linear functions
f : {0, 1}n → {0, 1}, and introduce the BLR test, below.

Theorem 3.3 (BLR test [BLR93]). There exists a (3, 1)-tester BLR for LIN. Given oracle access
to a function f : {0, 1}n → {0, 1}, the tester BLR simply draws uniform x, y ∼ {0, 1}n and accepts
iff f(x) + f(y) = f(x+ y).

The BLR test is remarkably simple, yet it is able to test for the global property of linearity
using extremely few (local) queries q = 3, while simultaneously having excellent soundness λ = 1.
We conclude this section by proving the following slightly weaker version of Theorem 3.3.

Theorem 3.4. BLR is a (3, 2/9)-tester for LIN.

While the proof of Theorem 3.3 is not too long, it goes by way of Fourier analysis (of Boolean
functions), which we do not have ample time to introduce.7 On the other hand, Theorem 3.4 can
be proven directly, without using any additional machinery. We present it now.

The key tool we use to prove Theorem 3.4 is an auxiliary function g : {0, 1}n → {0, 1} we
call the majority decoder. Intuitively, given a function f to be tested, g can be thought of as a
“smoothening” of f that makes it “more linear.” In more detail, recall that f is linear iff for any
fixed x ∈ {0, 1}n and all y ∈ {0, 1}n it holds that f(y) + f(x+ y) = f(x). The majority decoder g
will be defined so that g(x) takes the majority value of f(y) + f(x+ y) over all y. More formally,
it is defined as follows.

g(x) :=

{
1 if Pry∼{0,1}n [f(y) + f(x+ y) = 1] ≥ 1/2,

0 otherwise.

Using the majority decoder, we present two simple claims from which Theorem 3.4 will easily follow.

Claim 3.5. For any function f : {0, 1}n → {0, 1}, it holds that Pr[BLRf rejects] ≥ 1
2 · dist(f, g).

Claim 3.6. For any function f : {0, 1}n → {0, 1}, if Pr[BLRf rejects] < 2
9 then g ∈ LIN.

Before proving these two claims, we show how they immediately imply Theorem 3.4.

Proof of Theorem 3.4. As per Definition 3.2, we must show that BLR is complete, sound, and
efficient for testing the class LIN of linear functions. Efficiency is straightforward, since the tester
BLR clearly just makes q = 3 queries. The completeness is also straightforward, since the definition
of linearity and the BLR test implies that BLR will always accept if f is linear. Thus, all that
remains is to show that BLR is sound: that is, f /∈ LIN =⇒ Pr[BLRf = 0] ≥ 2

9 · dist(f, LIN).
To show that this is true, we proceed with two simple cases: either g is linear, or g is not. If g

is linear, then dist(f, g) ≥ dist(f, LIN), by definition of dist(·, ·). Thus by Claim 3.5 we get

Pr[BLRf rejects] ≥ 1

2
· dist(f, g) ≥ 1

2
· dist(f, LIN) ≥ 2

9
· dist(f, LIN).

7For an introduction to this area and a proof of Theorem 3.3, we recommend the excellent book of O’Donnell [O’D14].
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On the other hand, if g is not linear, then by Claim 3.6 we get Pr[BLRf rejects] ≥ 2
9 . Since dist(·, ·)

is a probability by its definition, we know it takes values in [0, 1], and in particular is at most 1.
Thus we again have

Pr[BLRf rejects] ≥ 2

9
≥ 2

9
· dist(f, LIN).

Thus, all that remains is to prove Claim 3.5 and Claim 3.6. We start with the former.

Proof of Claim 3.5. For every x ∈ {0, 1}n, we define a measure a(x) which counts the fraction of
y ∈ {0, 1}n with which x does not “behave linearly” under f . More formally, we define

a(x) := Pr
y∼{0,1}n

[f(y) + f(x+ y) ̸= f(x)].

Notice that a(x) > 1/2 if and only if x does not behave linearly with most y. More formally, using
the definitions of this measure a and our majority decoder g, it is straightforward to verify that

a(x) > 1/2 ⇐⇒ f(x) ̸= g(x).

Using this observation, we are motivated to define a set of “bad” inputs on which f disagrees with
the majority decoder, g:

BAD := {x ∈ {0, 1}n : f(x) ̸= g(x)} = {x ∈ {0, 1}n : a(x) > 1/2}.

It is now a straightforward calculation to prove the claim:

Pr[BLRf rejects] := Pr
x,y

[f(x) + f(y) ̸= f(x+ y)]

= Pr
x,y

[f(x) ̸= f(y) + f(x+ y)]

= Ex[a(x)]

≥ 1

2
· Pr

x
[x ∈ BAD]

=
1

2
· Pr

x
[f(x) ̸= g(x)]

=
1

2
· dist(f, g).

We now conclude our proof of Theorem 3.4 by proving Claim 3.6. In order to prove this result,
we will introduce another measure λ(x) which counts the fraction of y ∈ {0, 1}n on which g “fails
to make x behave linearly with y under f .” More formally, we define

λ(x) := Pr
y∼{0,1}n

[f(y) + f(x+ y) ̸= g(x)].

Now, in order to prove Claim 3.6, we will use the following subclaim.

Subclaim 3.7.

Pr[BLRf rejects] <
2

9
=⇒ λ(x) <

1

3
for all x ∈ {0, 1}n.

We now proceed by showing how Subclaim 3.7 implies Claim 3.6. Then, we will finally conclude
with the proof of Subclaim 3.7.
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Proof of Claim 3.6. We wish to show that Pr[BLRf rejects] < 2
9 =⇒ g ∈ LIN. Towards this end,

for each x ∈ {0, 1}n we define a set of “bad” y for which g “fails to make x behave linearly with y
under f .” That is, we define

BADx := {y ∈ {0, 1}n : g(x) ̸= f(y) + f(x+ y)}.

By Subclaim 3.7, we know that |BADx| < 2n/3 for all x. The goal now is to use this to show
g ∈ LIN. That is, we must show that for any v1, v2 ∈ {0, 1}n it holds that g(v1)+g(v2) = g(v1+v2).
Towards this end, we observe the following:

• For any y /∈ BADv1 , it holds that g(v1) = f(y) + f(y + v1).

• For any y /∈ BADv2 , it holds that g(v2) = f(y) + f(y + v2).

• For any y /∈ BADv1+v2 , it holds that g(v1 + v2) = f(y) + f(y + v1 + v2).

As it turns out, it will be more handy to re-write the last bullet in another way. First, define
the set BAD∗

v1+v2 := {y : y + v1 ∈ BADv1+v2}. Then, we note that |BAD∗
v1+v2 | < 2n/3 since

|BADv1+v2 | < 2n/3, and we observe that we may re-write the last bullet from above as follows.

• For any y /∈ BAD∗
v1+v2 , it holds that g(v1 + v2) = f(y + v1) + f(y + v2).

Now, since we know that BADv1 ,BADv2 , and BAD∗
v1+v2 all contain < 2n/3 elements, there must

exist some z ∈ {0, 1}n that does not belong to any of these sets. And by our bullets above, we
know that all of the following must hold:

• g(v1) = f(z) + f(z + v1).

• g(v2) = f(z) + f(z + v2).

• g(v1 + v2) = f(z + v1) + f(z + v2).

Combining all of this, we get

g(v1) + g(v2) = (f(z) + f(z + v1)) + (f(z) + f(z + v2)) = f(z + v1) + f(z + v2) = g(v1 + v2),

which proves that g is linear, as desired.

At last, all that remains is to prove Subclaim 3.7. We do so below.

Proof of Subclaim 3.7. We wish to prove that Pr[BLRf rejects] < 2
9 =⇒ λ(x) < 1

3 , where λ(x) :=
Pry[f(y) + f(x+ y) ̸= g(x)]. Towards this end, we will prove two bounds on the quantity

Pr
y,y′

[f(y) + f(x+ y) = f(y′) + f(x+ y′)]. (1)

First, note that for random y, y′, we have that Pry,y′ [f(y)+f(y′) = f(y+y′)] = Pr[BLRf accepts] >
7/9. Similarly, for any fixed x we also have Pry,y′ [f(x + y) + f(x + y′) = f(x + y + x + y′)] =
Pry,y′ [f(y) + f(y′) = f(y + y′)] = Pr[BLRf accepts] > 7/9, and thus Pry,y′ [f(x + y) + f(x + y′) =
f(y + y′)] > 7/9. Thus, we have

Pr
y,y′

[f(y) + f(x+ y) = f(y′) + f(x+ y′)] = Pr
y,y′

[f(x+ y) + f(x+ y′) = f(y) + f(y′)]

≥ Pr
y,y′

[f(x+ y) + f(x+ y′) = f(y + y′), f(y) + f(y′) = f(y + y′)]

> 5/9,
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where the last inequality follows by the union bound. Thus we have obtained a strict lower bound
of 5/9 on the quantity in Equation (1). On the other hand, note that by definition of λ(x) we have:

Pr
y,y′

[f(y) + f(x+ y) = f(y′) + f(x+ y′)] = Pr
y,y′

[f(y) + f(x+ y) ̸= g(x), f(y′) + f(x+ y′) ̸= g(x)]

+ Pr
y,y′

[f(y) + f(x+ y) = g(x), f(y′) + f(x+ y′) = g(x)]

= λ(x)2 + (1− λ(x))2.

Thus, combining our two bounds on the quantity in Equation (1), we get

λ(x)2 + (1− λ(x))2 > 5/9,

which can be rewritten as
(3λ(x)− 1)(3λ(x)− 2) > 0.

It is now straightforward to verify that in order for this to be true, it must hold that λ(x) < 1/3 or
λ(x) > 2/3. However, the latter setting of λ(x) directly contradicts the definition of the majority
decoder, g. Thus it must hold that λ(x) < 1/3, as desired.

Thus concludes the proof of Subclaim 3.7, Claim 3.6, and Theorem 3.4 (the BLR test). Next
time (actually, in Lecture 24), we will see how to use the BLR test to prove the weak PCP theorem,
Theorem 3.1.
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