CS 6810: Theory of Computing Fall 2021

Lecture 18: Oct 28, 2021
Lecturer: Eshan Chattopadhyay Scribe: Conan Gillis

More on Interactive Proofs

In today’s class, we will prove the following theorem that is due to Lund, Fortnow, Karloff and
Nisan [LFKN92]. Building on these ideas, Shamir [Sha92] proved that IP=PSAPCE.

Theorem 0.1. CoNPC IP

Proof. Recall that SAT is complete for CONP, so if SAT € IP, then since IP is closed under polynomial
reduction all of CONP must be in NP. Thus, we aim to show SAT is indeed in IP. Recall SAT = {¢ : ¢
is a 3CNF that is satisfiable}. To this, define #SAT = {(¢,r) : ¢ is a 3CNF with exactly r satisfying
truth assignments}. Observe that SAT <, #SAT (take r = 0 in the obvious reduction). Thus,
#SAT € IP implies our desired claim of SAT € IP.

For notation, let ¢g denote ¢ with the first variable z; set to 0, and let ¢; denote ¢ with
x1 set to 1. Furthermore, let ¢gg denote ¢ with x1,z9 set to 0, and let ¢g9; denote ¢ with x;
set to 0 and x5 set to 1, with ¢19, @11, P00, --., defined analogously. Moreover, in this notation,
let 74, b9b5...5, denote the number of satisfying assignments for ¢p,p,..5, (bi € {0,1}), so 7o is the
number of satisfying assignments for ¢g, 71 the number for ¢, and so on. Then, if r is the number of
satisfying assignments for ¢ itself, we must have r = ro+r1. In particular, this means (¢, r) € #SAT
if and only if rog + 71 = 1.

We now propose an insufficient, but suggestive, interactive-proof protocol for #SAT using a
prover P and verifier V. We are given (¢, r). First, the prover sets V' a pair of numbers, which we
call (rg,71) (these may not actually be the real numbers of satisfying assignments for ¢, ¢1; this
will be important in our analysis of soundness). The verifier first checks ro + r1 = r, rejecting if
this does not hold, and sends the prover a random bit b € {0, 1} if it does. The procedure goes on
recursively on the input (¢p, 7).

For completeness, if (¢,r) € #SAT then an honest prover it will send (79, 1) that do indeed
correspond to ¢g, ¢1 each time, so the verifier will never reject and thus will (correctly) assert
(¢,7) € #SAT.

For soundness (here is where the protocol is insufficient), suppose (¢, 7) & #SAT. Then, at least
one of (¢g,r0), (p1,¢1) is not in #SAT. Note that ro,7; are the values returned by the possibly
dishonest prover, potentially distinct from the numbers of satisfying assignments for these two
3CNFs. The probability that (¢p,75) & #SAT is at least %, where b is the bit randomly chosen
in the protocol. Now, in the worst case scenario, a prover may send “good” values for (rg,r1) for
all the rounds until the end (if there are “good” values for all rounds, then (¢,r) € #SAT), and
there may be only one location (¢;,r;) at the end of the recursion tree that is not in #SAT. In

this case, the best bound we can make is P(V does not accept (¢,7)) > 5= <= P(V accepts
(p,7)) <1-— 2%, which is much too high for our purposes, since we need the latter probability to

be bounded above by ?%
To salvage this protocol, we introduce the technique of Arithmetization:

Lecture 18: Oct 28, 2021 2

Arithmetization Pick a large prime p € (27,2""!]. Given a formula ¢ on n variables, we will
find a polynomial f, on n variables in F,, such that for all x € {0,1}", ¢(x) = fg(x) mod p. It is,
in fact, easy to do so. If ¢ has n variables and m clauses, it is of the form

¢ =N, C

where ¢; = Iy, V Iy, V¢, for lo,, I, le; € {z1,....,20,T1, ..., T }. If |5, = x; for some j, define g,, =
(1 — X;), otherwise l,, = T; and we define g,, = X (here, z; is a literal in ¢, X is some variable
ranging over Fp). Define ¢s,, g, analogously to g,,, and let f; =1 — g4, 95,9, Then,

f¢ = H?i1fi-

As an example of this, if
Ci =22 VT35V x90,

then
fz’ =1-— (1 — X2>X5<1 — XQ()).

Observation 0.2.
r= Z fe(x) mod p

ze{0,1}"
deg(fy) < 3m.

We now solve a new problem #POLY = {(f,r) : f a polynomial in m variables over I, of degree
d at most polynomial in n, for p € (27,2"+1],

r= Z f(z) mod p}.

z€{0,1}"

By the above arithmetization argument, #SAT <, #POLY, so showing #POLY € IP will be enough
to complete our proof.

Our interactive proof protocol (inspired by the one described above) is as follows. Given (f,r),
the prover first sends the verifier a polynomial

g(z1) = Z f(x1, e, ..y xy).

z2€{0,1}

zne{0,1}

In other words, g is the sum of the values of f as a polynomial in z; for all possible choices of
x9,...,Zn (at least, that is what the verifier wants it to be - the prover could still be dishonest).
The verifier then checks if g(0) + ¢g(1) = r, rejecting if not, then chooses a random A; € F, and
recursing on (f (A1, x2, ..., zn), g(A1)).

Claim 0.3. This works

Proof. Suppose (f,r) € #POLY. If the prover is honest, the protocol will not reject (f,r), so
completeness holds.
Otherwise, suppose
r# Y f(z) modp

ze{0,1}m

Lecture 18: Oct 28, 2021 3

and h(z1) = Y f(z1,22,...,2,). We see h(0) + (1) = > f(z) and g(0) + g(1) = r,
z2€{0,1} ze{0,1}"
:cn€~:[0,l}

so g # h. Therefore, Py, [g(A1) = h(\1)] = Pyl(g—h)(M)] =0 < %. Therefore, P| verifier
rejects| > (1 — %)" >1-— d?” so Py, | prover accepts (f,r)] < %" < % since p > 2" and dn is poly(n).
This completes the proof.]

O]

References

[LFKNO92| Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM (JACM), 39(4):859-868, 1992.

[Sha92] Adi Shamir. Ip= pspace. Journal of the ACM (JACM), 39(4):869-877, 1992.

