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More on Interactive Proofs

In today’s class, we will prove the following theorem that is due to Lund, Fortnow, Karloff and
Nisan [LFKN92]. Building on these ideas, Shamir [Sha92] proved that IP=PSAPCE.

Theorem 0.1. CoNP⊆ IP

Proof. Recall that SAT is complete for CoNP, so if SAT ∈ IP, then since IP is closed under polynomial
reduction all of CoNP must be in NP. Thus, we aim to show SAT is indeed in IP. Recall SAT = {φ : φ
is a 3CNF that is satisfiable}. To this, define #SAT = {(φ, r) : φ is a 3CNF with exactly r satisfying
truth assignments}. Observe that SAT ≤p #SAT (take r = 0 in the obvious reduction). Thus,
#SAT ∈ IP implies our desired claim of SAT ∈ IP.

For notation, let φ0 denote φ with the first variable x1 set to 0, and let φ1 denote φ with
x1 set to 1. Furthermore, let φ00 denote φ with x1, x2 set to 0, and let φ01 denote φ with x1
set to 0 and x2 set to 1, with φ10, φ11, φ000, ..., defined analogously. Moreover, in this notation,
let rb1b2b3...bk denote the number of satisfying assignments for φb1b2...bk (bi ∈ {0, 1}), so r0 is the
number of satisfying assignments for φ0, r1 the number for φ1, and so on. Then, if r is the number of
satisfying assignments for φ itself, we must have r = r0+r1. In particular, this means (φ, r) ∈ #SAT
if and only if r0 + r1 = r.

We now propose an insufficient, but suggestive, interactive-proof protocol for #SAT using a
prover P and verifier V. We are given (φ, r). First, the prover sets V a pair of numbers, which we
call (r0, r1) (these may not actually be the real numbers of satisfying assignments for φ0, φ1; this
will be important in our analysis of soundness). The verifier first checks r0 + r1 = r, rejecting if
this does not hold, and sends the prover a random bit b ∈ {0, 1} if it does. The procedure goes on
recursively on the input (φb, rb).

For completeness, if (φ, r) ∈ #SAT then an honest prover it will send (r0, r1) that do indeed
correspond to φ0, φ1 each time, so the verifier will never reject and thus will (correctly) assert
(φ, r) ∈ #SAT.

For soundness (here is where the protocol is insufficient), suppose (φ, r) 6∈ #SAT. Then, at least
one of (φ0, r0), (φ1, φ1) is not in #SAT. Note that r0, r1 are the values returned by the possibly
dishonest prover, potentially distinct from the numbers of satisfying assignments for these two
3CNFs. The probability that (φb, rb) 6∈ #SAT is at least 1

2 , where b is the bit randomly chosen
in the protocol. Now, in the worst case scenario, a prover may send “good” values for (r0, r1) for
all the rounds until the end (if there are “good” values for all rounds, then (φ, r) ∈ #SAT), and
there may be only one location (φi, ri) at the end of the recursion tree that is not in #SAT. In
this case, the best bound we can make is P (V does not accept (φ, r)) ≥ 1

2n ⇐⇒ P (V accepts
(φ, r)) ≤ 1 − 1

2n , which is much too high for our purposes, since we need the latter probability to
be bounded above by 1

3.
To salvage this protocol, we introduce the technique of Arithmetization:
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Arithmetization Pick a large prime p ∈ (2n, 2n+1]. Given a formula φ on n variables, we will
find a polynomial fφ on n variables in Fp such that for all x ∈ {0, 1}n, φ(x) = fφ(x) mod p. It is,
in fact, easy to do so. If φ has n variables and m clauses, it is of the form

φ = Λmi=1Ci

where ci = lai ∨ lbi ∨ lci for lai , lbi , lci ∈ {x1, ..., xn, x1, ..., xn}. If lai = xj for some j, define gai =
(1−Xj), otherwise lai = xj and we define gai = Xj (here, xj is a literal in φ, Xj is some variable
ranging over FP ). Define gbi , gci analogously to gai , and let fi = 1− gaigbigci . Then,

fφ = Πm
i=1fi.

As an example of this, if
Ci = x2 ∨ x5 ∨ x20,

then
fi = 1− (1−X2)X5(1−X20).

Observation 0.2.
r =

∑
x∈{0,1}n

fφ(x) mod p

deg(fφ) ≤ 3m.

We now solve a new problem #POLY = {(f, r) : f a polynomial in m variables over Fp of degree
d at most polynomial in n, for p ∈ (2n, 2n+1],

r =
∑

x∈{0,1}n
f(x) mod p}.

By the above arithmetization argument, #SAT ≤p #POLY, so showing #POLY ∈ IP will be enough
to complete our proof.

Our interactive proof protocol (inspired by the one described above) is as follows. Given (f, r),
the prover first sends the verifier a polynomial

g(x1) =
∑

x2∈{0,1}
...

xn∈{0,1}

f(x1, x2, ..., xn).

In other words, g is the sum of the values of f as a polynomial in x1 for all possible choices of
x2, ..., xn (at least, that is what the verifier wants it to be - the prover could still be dishonest).
The verifier then checks if g(0) + g(1) = r, rejecting if not, then chooses a random λ1 ∈ Fp and
recursing on (f(λ1, x2, ..., xn), g(λ1)).

Claim 0.3. This works

Proof. Suppose (f, r) ∈ #POLY. If the prover is honest, the protocol will not reject (f, r), so
completeness holds.

Otherwise, suppose

r 6=
∑

x∈{0,1}n
f(x) mod p
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and h(x1) =
∑

x2∈{0,1}
...

xn∈{0,1}

f(x1, x2, ..., xn). We see h(0) + h(1) =
∑

x∈{0,1}n
f(x) and g(0) + g(1) = r,

so g 6= h. Therefore, Pλ1 [g(λ1) = h(λ1)] = Pλ1 [(g − h)(λ1)] = 0 < d
p . Therefore, P [ verifier

rejects] ≥ (1− d
p)n ≥ 1− dn

p so Pλ1 [ prover accepts (f, r)] ≤ dn
p < 1

3 since p > 2n and dn is poly(n).
This completes the proof.
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