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1 Interactive Proofs

We already saw that dIP = NP. So in order to make use of the potential of interaction between
a verifier and a prover, we need to make the verifier probabilistic.

Definition 1.1 (IP). We say a language L ∈ IP[k] if there is a probabilistic polytime verifier V
with private randomness such that

(completeness) x ∈ L =⇒ ∃P Pr [outV ⟨V, P ⟩(x) = 1] ≥ 2

3

(soundness) x /∈ L =⇒ ∀P Pr [outV ⟨V, P ⟩(x) = 1] <
1

3

where any prover P can have unbounded computational power and where outV ⟨V, P ⟩(x) denotes the
output of the verifier V at the end of an interaction between V and P (beginning at V ) when given
input x. Then we can define IP = ∪c≥1IP[nc].

Theorem 1.2 ([2, 3]). IP = PSPACE

We will not prove this entirely. There is an interesting account about the discovery of this result
by Lázló Babai [1].

2 Graph Non-isomorphism

We will gain some intuition on how this proof should work by looking at graph non-isomorphism.
We say graphsG1 andG2 are isomorphic (G1

∼= G2) if there is some permutation π : V → V such
that π(G1) = G2. Then we define the graph isomorphism language GI = {⟨G1, G2⟩ : G1

∼= G2}. It
is easy to see that GI ∈ NP, as we can simply use the permutation π as the certificate.

Similarly, we will define the graph non-isomorphism language GNI = {⟨G1, G2⟩ : G1 ≇ G2}.
Clearly, GNI ∈ coNP, but is GNI ∈ IP?

The answer is yes. Here is how we can do it: The verifier will select a random permutation π
and a random bit b ∈ {1, 2}, then send π(Gb) to the prover. The verifier receives back a bit b′,
which is the prover’s guess of what b was. The verifier accepts if b = b′, and rejects otherwise.

Let’s confirm that this shows GNI ∈ IP. Suppose G1 ≇ G2. Then an honest prover can always
correctly determine b from π(Gb). If G1

∼= G2, then there is a 1/2 chance that any prover guessed
the correct b. Running this process multiple times can reduce the soundness error to below 1/3.

3 Public Coins (Arthur-Merlin Games)

Now, we consider what happens if the prover has access to the verifier’s randomness. (Here, the
verifier is Arthur and the prover is Merlin, since Merlin, as a wizard, can know all of Arthur’s
secrets.)

1
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Definition 3.1 (AM). We say a language L ∈ AM[k] if L can be decided by a k round interactive
proof, where the messages sent by the verifier are random bits of polynomial length (and the verifier
has no other randomness).

Usually, we say AM = AM[2], in which the verifier sends a single random string r, and the
prover returns a message m. Formally, L ∈ AM if

x ∈ L =⇒ ∃P Pr [V (x, r,m) = 1] ≥ 2

3

x /∈ L =⇒ ∀P Pr [V (x, r,m) = 1] <
1

3
.

Definition 3.2 (MA). MA is the class of languages where the prover first sends a message and
the verifier then generates some randomness and determines inclusion in the language.

Theorem 3.3 (Goldwasser, Sipser, 1987). IP[k] ⊆ AM[k + 2]

We will prove the following easier result that uses the same main idea.

Theorem 3.4. GNI ∈ AM

3.1 Universal Hash Functions

For our proof, we will first need a notion of hash functions.
We desire to find a collection of hash functions Hn,ℓ =

{
h : {0, 1}n → {0, 1}ℓ

}
where for any

pair of distinct x and x′, Prh∈H [h(x) = h(x′)] ≤ 1
L where L = 2ℓ. In particular, we will use

Hn,ℓ = {ha,b}a,b∈F2n
, where ha,b = ax + b (mod 2ℓ). (The proof of why this satisfies the desired

properties can be found in the book.)

3.2 Set Lower Bound Protocol

Now we introduce the set lower bound protocol, which decides whether a set S has cardinality at
least k up to a factor of 2. Formally, we have

• A set S ⊆ {0, 1}n

• A threshold k

and we desire a protocol that if |S| > k accept with probability at least 2
3 , and if |S| < k

2 reject
with probability at least 2

3 .

Why is this relevant to GNI? Consider

S = {⟨H,π⟩ : H isomorphic to at least one of G1, G2, π ∈ Aut(H)}

Then, notice that if G1
∼= G2, |S| = n!, but if G1 ≇ G2, |S| = 2n!. So if we can show that the set

lower bound protocol is an AM protocol, then it shows that GNI ∈ AM.

To achieve this, we fix ℓ such that 2ℓ

4 ≤ k ≤ 2ℓ

2 . Then the verifier randomly samples y ∈ {0, 1}ℓ
and h ∈ Hn,ℓ, and the prover tries to respond with a some x ∈ S such that h(x) = y (including
a certificate that x ∈ S). The verifier accepts if it verifies that x ∈ S and h(x) = y, and rejects
otherwise.
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If |S| < k
2 , then |h(S)| < k

2 , so the probability of accepting is no more than k
2ℓ+1 . (The

probability of acceptance is equivalent to the proportion of {0, 1}ℓ that is in the image of h(S).)
If |S| > k, for a fixed h,

|h(s)| ≥ |S| −
∑

x ̸=x′∈S
1h(x)=h(x′)

so

E|h(s)| ≥ |S| −
∑

x ̸=x′∈S
E1h(x)=h(x′)

≥ |S| −
(
|S|
2

)
1

2ℓ

and this means the probability of acceptance is at least

|S|
2ℓ

− |S|2

22ℓ+1
≥ |S|

2ℓ

(
1− |S|

2ℓ+1

)
≥ k

2ℓ

(
1− 1

4

)
≥ 3k

2ℓ+2
.

As we have a gap between the probabilities of acceptance, repetition can ensure that we get our
desired completeness and soundness errors.

Therefore, as we have shown that this set lower bound protocol is an AM protocol, we can
conclude that GNI ∈ AM.
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