
CS 6810: Theory of Computing Fall 2021

Lecture 12: Oct 5, 2021

Lecturer: Eshan Chattopadhyay Scribe: Mark Schachner

1 Randomness in Computation

So far, we’ve seen multiple extensions of the Turing Machine construction, such as allowing machines
multiple transition functions, specially labelled states, and access to oracles or advice strings. Today,
we’ll look at how the recognizable complexity classes change when we allow machines access to
randomness. We will refer to machines with this access as Probabilistic Turing Machines (PTMs).

Before we give the precise definition of a PTM, it is worth philosophizing for a moment about
what in our treatment should constitute randomness. Many concrete processes that are commonly
considered random are in fact very possible to predict accurately with enough information; indeed,
if you understand well the mechanics of how a die falls, rolls, and bounces, you can deduce which
side lands face-up from a given set of initial conditions. Some processes, such as those in chaotic
systems or the probablistic world of quantum mechanics, can more plausibly be considered random.
For our purposes, it will suffice to black-box a “source of randomness” as a sample from a uniform
distribution of binary strings.

On to the definition:

Definition 1.1. [Probabilistic Turing machines] A probabilistic Turing machine, abbreviated PTM,
is a standard multitape Turing machine M with the following augmentation: M takes as input a
random string r ∈ {0, 1}∗ as well as the usual input string x ∈ {0, 1}∗. Additionally, the machine
comes equipped with a function R : N→ N such that for each input (x, r) we have |r| = R(|x|).

Observe that this definition bears some similarity to the definition of a non-deterministic Turing
machine, in that it opens multiple possible paths of computation for the machine. We will examine
this connection in more detail later. For now, recall that we defined the recognition of a language
L by an NDTM M as the existence of at least one computational path which correctly decides
L. In the probabilistic case, we require something stronger, a lower bound on the “success rate”
of the machine. There are multiple possible notions of the computation of a language by a PTM,
depending on the types of error we allow the machine to make:

Definition 1.2. [PTM Computation] Let M be a PTM, L ⊆ {0, 1}∗, and suppose that for any
input (x, r), M halts in time T (|x|) regardless of r.

(a) We say M computes L in bounded-error probabilistic time T (n) if for all x ∈ {0, 1}∗ we have

Pr[M(x, r) = L(x)] ≥ 2/3.

We denote the class of such languages by BPTIME(T (n)).

(b) We say M computes L in randomized time T (n) if for all x ∈ {0, 1}∗ we have

x ∈ L⇒ Pr[M(x, r) = 1] ≥ 2/3,

x 6∈ L⇒ Pr[M(x, r) = 1] = 1.

We denote the class of such languages by RTIME(T (n)).

1

Lecture 12: Oct 5, 2021 2

A few remarks about these definitions:

• The constant 2/3 in both definitions is nearly arbitrary; what matters is that the success rate
of the machine is bounded away from 1/2. Note that we can always achieve a success rate of
1/2 by simply guessing randomly.

• The key difference between the classes BPTIME and RTIME is their treatment of “false
positive” results. For a PTM M to compute L in randomized time, it must always correctly
identify strings which are not in L. However, bounded-error probabilistic time permits what
is called two-sided error, i.e., false positives and false negatives– so long as these are not too
common.

• We can form the class coRTIME(T (n)); it is not too hard to see that this corresponds to
languages which are computable by PTMs as defined above, with the exception that we allow
false positives and disallow false negatives. Under the definition below, this will lead to the
class coRP which corresponds to languages recognizatble in randomized polynomial time with
no false negatives.

With these notions made precise, we can define complexity classes analogous to those we have
seen in other cases:

Definition 1.3.

BPP :=
⋃
c≥1

BPTIME(nc), RP :=
⋃
c≥1

RTIME(nc).

2 Randomness vs. Nondeterminism

As we hinted previously, there is a connection between probabilistic computation and the more fa-
miliar nondeterministic computations we have already seen. Intuitively, we can impart probabilistic
behavior to an NDTM by allowing it to choose randomly which of its two transition functions to
employ at each step of the computation, and requiring some lower bound on the success rate of the
resulting randomized process. This is summed up in the following proposition:

Proposition 2.1. Let M be an NDTM with transition functions δ0, δ1. Define a PTM M ′ such
that, on input (x, r), M ′ computes M on x, where on the n-th step of computation M transitions
via δ0 if the n-th bit of r is 0, and via δ1 if the n-th bit of r is 1. Then:

• M ′ computes a language L in bounded-error probabilistic time if and only if the proportion of
computation paths of M which successfully decide each x ∈ {0, 1}∗ is at least 2/3, and

• M ′ computes a language L in randomized time if and only if the proportion of computation
paths of M which successfully decide each x ∈ L is at least 2/3, and all computation paths
successfully decide each x 6∈ L.

Thus we have made explicit the equivalence between the nondeterminism afforded by the two
transition functions δ0, δ1, and the randomness provided by r.

Lecture 12: Oct 5, 2021 3

3 Examples of Random Algorithms

The discussion in Section 2 shows that the definitions of randomized computation we have seen are
in fact simply a different perspective on nondeterministic computation. So what does this shift in
perspective afford us? It turns out that randomized computation is incredibly useful for designing
simple algorithms that efficiently solve difficult problems with high success rate. The purpose of
this section is to showcase a few examples, to demonstrate the power of randomness in computation.

Example 3.1. [Perfect matchings in bipartite graphs]
Let G be a graph; we identify the edges of G with the nonzero entries of its incidence matrix M .
Under this identification, recall G is bipartite if there exists a partition {V1, V2} of its vertex set
such that all nonzero entries of M lie in the minor MV1,V2 ; a perfect matching on G is a subset of the
nonzero entries of M which intersects each row (and thus column) of M exactly once. Therefore a
perfect matching on a bipartite graph is a matrix M ′ such that M ′ij ≤Mij for all i, j and MV1,V2 is
a permutation matrix. This reduces the search problem for perfect matchings in bipartite graphs
to the problem of whether a given irreflexive symmetric n×n matrix M “contains” a permutation
matrix, in the sense that any nonzero entry of the permutation matrix is nonzero in M as well.

Now, recall the “permutation definition” of the determinant: for a matrix M , det(M) is the
sum over all permutations σ of the product of Mi,σ(i) over all i. With this definition in mind, we
define a matrix X with a random variable xij ∈ {0, 1} in each position where the incidence matrix
for G has a 1. Then we have det(X) 6= 0 if and only if G has a perfect matching; simply choose
the xij to be 1 at each entry of the permutation matrix. Since there exist efficient algorithms to
compute the determinant, this gives a simple random algorithm for determining if G has a perfect
matching: choose values for the xij at random, and compute det(X). If the determinant is nonzero,
we halt and accept, and otherwise we repeat until sufficiently confident.

Example 3.2. [Primality testing with the Miller-Rabin test]
Any odd integer greater than 2 is of the form 2s · d + 1 for odd d. We say such an integer n is a
probable prime to base a, where a < n is positive if either ad ≡ 1 mod n or a2

rd ≡ −1 mod n, for
some nonnegative r < s. As the name suggests, this is an accurate but imperfect characterization
of prime numbers. The Miller-Rabin primality test exploits this by testing n with multiple bases.
Specifically, the algorithm proceeds as follows. Choose some parameter k which will determine how
accurate the test is. Then run the following four steps k times:

(i) Choose a random integer a in [2, n− 2], and let x = ad mod n.

(ii) If x = ±1 mod n then go to step (i).

(iii) Otherwise, repeat the following r − 1 times:

• Let x = x2 mod n.

• If x = −1 then return to step (i).

(iv) If none of the r − 1 repetitions results in a loop, then halt and output “composite”.

If the algorithm runs k times without halting, then the test concludes n is probably prime. The
algorithm runs in polynomial time for any fixed k, and the success rate is exponential in k; therefore
the existence of this algorithmm places primality testing in BPP .

Example 3.3. [Polynomial Identity Testing]
Let F be a finite field, let n ∈ N, and suppose p, q ∈ F[x1, . . . , xn] are polynomials of degree ≤ d.
For this example, we are concerned with determining whether p = q. We note two facts:

Lecture 12: Oct 5, 2021 4

• Since p = q if and only if p − q = 0, it suffices to consider the decision problem of whether
a single polynomial is equal to zero. For this reason, we refer to this problem as Polynomial
Identity Testing (PIT).

• Representation matters greatly here. If a polynomial p is given by its coefficients, PIT is
trivial since p = 0 if and only if each coefficient is zero. In complexity theory, polynomials
are often represented by algebraic circuits, which are similar to Boolean circuits except with
F-valued inputs and gates replaced by the operations ·,×. We will abstract this away by
instead allowing “black-box access” to p; that is, we will only assume that we can efficiently
compute p on any input.

The question of resolving PIT is central to algebraic complexity theory. Many problems, includ-
ing finding perfect matchings in bipartite graphs, are reducible to PIT. Moreover, it is conjectured,
but not known, that there exists a deterministic polytime algorithm to decide PIT. However, we
have an easy random algorithm which decides PIT: choose x1, . . . , xn at random and compute
p(x1, . . . , xn). If the result is zero, output that p = 0, and otherwise output p 6= 0. This algorithm
works well because of the following result, named for Jack Schwartz and Richard Zippel but also
commonly attributed to Richard DeMillo and Richard Lipton:

Lemma 3.4 (Schwartz-Zippel). Let p ∈ F[x1, . . . , xn] be of degree d, and let r1, . . . , rn be randomly
and independently chosen from the uniform distribution on F Then

Pr[p(x1, . . . , xn) = 0] ≤ d

|F|
.

Other than these three examples, many combinatorial problems and graph-theoretic problems
such as the max-cut problem can be efficiently solved using access to randomness; furthermore,
these algorithms often use randomness in very simple ways (e.g., choose a random partition of a
graph and test if it determines a maximal cut). We will conclude our examples of randomness in
computation with a closer look at an algorithm which uses randomness in a more nontrivial way:
a randomized algorithm which decides 3SAT.

4 A closer look: Schönig’s Algorithm

To conclude, we present a randomized algorithm which decides 3SAT. The algorithm is due to Uwe
Schöning, and is based on the concept of local search: that is, given a nonsolution of a formula,
we look to formulas very close to the original guess until we are successful. The algorithm runs as
follows. We are given a CNF ϕ in n variables.

• Choose an assignment at random.

• Repeat the following n times:

– Test ϕ on the assignment. If it is satisfied, stop and accept. Otherwise,

– Choose an unsatisfied clause in ϕ at random, and

– Flip one of the literals in the unsatisfied clause.

• Repeat the above two steps 1/p times, where p is the probability that the algorithm stops
and accepts on a single repetition.

Lecture 12: Oct 5, 2021 5

The third step means that the complexity of the algorithm is polynomial in 1/p. We will show that
p ≥ (2/3)n; this can in fact be improved to (3/4)n. This bounds the runtime of the algorithm below
by (4/3)n. In order to show our lower bound on p, suppose x∗ ∈ {0, 1}n is a satisfying assignment
for ϕ. Denote by ∆(x, y) the Hamming distance between x and y, i.e., the number of positions at
which x, y differ. We have

Pr[∆(x, x∗) = i] =

(
n
i

)
2n

.

Now, say a step in the algorithm is “good” if it decreases the Hamming distance from x to x∗. The
probability of a good step is at least 1/3, so the probability of i consecutive good steps is at least
(1/3)i. Thus

Pr[∆(x, x∗) = i, i good steps] =

(
n
i

)
2n
· (1/3)i.

Summing over all Hamming distances, we obtain

p ≥
n∑
i=0

(
n
i

)
2n
· (1/3)i =

1

2n
(1 + 1/3)n = (2/3)n.

Therefore, the running time of the algorithm is (3/2)n.

	Randomness in Computation
	Randomness vs. Nondeterminism
	Examples of Random Algorithms
	A closer look: Schönig's Algorithm

