
CS 6810: Theory of Computing Fall 2021

Lecture 10: September 28, 2021

Lecturer: Eshan Chattopadhyay Scribe: Jesse Goodman

In which we introduce the polynomial hierarchy and alternating Turing machines.

1 The Polynomial Hierarchy

Background and motivation In the previous lecture, we introduced the complexity class
P/poly, which contains all languages computable by polynomial sized circuits. We saw that
P ⊆ P/poly, and thus demonstrating a language L ∈ NP that does not have polynomial sized
circuits would suffice to prove P 6= NP.

This approach towards proving P 6= NP is tempting, as circuits are simple combinatorial objects
that seem much easier to analyze than Turing machines. However, we saw in the last lecture that
P/poly contains undecidable languages. Thus, one may be concerned that there may not be any
languages in NP− P/poly, as this would make this approach towards proving P 6= NP futile.

In this lecture, we introduce the polynomial hierarchy, a fundamental complexity class that will
help assuage the above concerns. In particular, we will see (in the next lecture) that the polynomial
hierarchy can be used to provide strong evidence that NP 6⊆ P/poly, meaning that there is good
reason to believe P 6= NP can be proven using circuit lower bounds.

Beyond the above motivation, the polynomial hierarchy is a natural complexity class built from
subclasses that very nicely generalize P,NP, and coNP. As a result, these subclasses are able to
capture several natural problems which appear “just beyond the reach” of P,NP and coNP.1 We
now proceed to formally introduce the polynomial hierarchy.

The building blocks In order to build the polynomial hierarchy, the key idea is to provide two
different ways to equip a complexity class with more computational power. More formally, recall
that a complexity class C is simply a collection of languages L ⊆ {0, 1}∗. The first way we will
enhance C will be to equip it with an existential quantifier (∃).

Definition 1.1 (Complexity class ∃C). For any complexity class C, the complexity class ∃C is
defined as follows. For any language L ⊆ {0, 1}∗, it holds that L ∈ ∃C if and only if there is a
language L′ ∈ C and polynomial q such that for all x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃y ∈ {0, 1}q(|x|) such that (x, y) ∈ L′.

To help digest this definition, we make a few observations. First, note that the existential
quantifier can only add power: more formally, we have C ⊆ ∃C, since one can always take q = 0.
On the other hand, it is not too difficult to show that an additional existential quantifier cannot
add even more power: that is, ∃∃C = ∃C. Finally, to see why Definition 1.1 is natural, we observe
that it provides the following clean characterization of NP.

Observation 1.2. ∃P = NP.

1We emphasize, however, that it not known whether these problems actually fall outside P,NP and coNP.

1

Lecture 10: September 28, 2021 2

Proof. L ∈ ∃P iff there is a language L′ ∈ P and a polynomial q such that x ∈ L ⇐⇒ ∃y ∈
{0, 1}q(|x|) such that (x, y) ∈ L′. Expanding out the definition of P, we get that L ∈ ∃P iff there
is a polynomial q and poly-time Turing machine M (computing a language L′) where x ∈ L ⇐⇒
∃y ∈ {0, 1}q(|x|) such that M(x, y) = 1. This is exactly the verifier-based definition of NP.

Indeed, as we believe P (NP, this suggests that the existential quantifier may sometimes add
strictly more power to a complexity class. This completes our discussion of the complexity class
∃C. We now consider a second way to equip C with more computational power, using a for-all
quantifier (∀).

Definition 1.3 (Complexity class ∀C). For any complexity class C, the complexity class ∀C is
defined as follows. For any language L ⊆ {0, 1}∗, it holds that L ∈ ∀C if and only if there is a
language L′ ∈ C and polynomial q such that for all x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∀y ∈ {0, 1}q(|x|) it holds that (x, y) ∈ L′.

Observe that, as in the existential case, the for-all quantifier can only add power: indeed,
we have C ⊆ ∀C, since we can always take q = 0. On the other hand, we again have that an
additional quantifier cannot add even more power: that is, ∀∀C = ∀C. Finally, we emphasize that
Definition 1.3 is natural via the following clean characterization of coNP.

Observation 1.4. ∀P = coNP.

The proof of this observation is identical to the proof of Observation 1.2, using instead the
verifier-based definition of coNP. As we believe P (coNP, this suggests that the for-all quantifier
may sometimes add strictly more power to a complexity class. This completes our discussion of
the complexity class ∀C.

Alternating quantifiers Above, we have seen that ∃P and ∀P exactly characterize NP and coNP,
respectively. Given these observations, it is natural to ask about the complexity classes that are
generated by prepending quantifiers to NP and coNP. Since we have seen that ∃C = ∃∃C, we know
via Observation 1.2 that ∃NP = NP. Similarly, we know via Observation 1.4 that ∀coNP = coNP.
Indeed, repeating quantifiers is not so interesting, and it is more meaningful to ask about the classes
∀NP = ∀∃P and ∃coNP = ∃∀P, which alternate quanitifers. We of course have ∀NP ⊇ NP and
∃coNP ⊇ coNP, but are these containments strict?

This turns out to be a surprisingly deep question, for which we do not have an answer. However,
the following language provides evidence that the answer may be yes:

minDNF := {φ ∈ {0, 1}∗ : φ is a DNF formula such that

no smaller DNF formula ψ computes the same function as φ.}

It seems that minDNF lies “just beyond the reach” of NP: for any given formulas φ, ψ, it is easy to
check φ 6≡ ψ in NP by checking if there is an assignment z such that φ(z) 6= ψ(z). But making sure
this holds for all smaller formulas ψ seems to require an additional (alternating) quantifier. Next,
we show that such an alternating quantifier suffices.

Claim 1.5. minDNF ∈ ∀NP.

Proof. Since ∀NP = ∀∃P, it suffices to find a language L′ ∈ P and polynomial q such that

φ ∈ minDNF ⇐⇒ ∀ψ ∈ {0, 1}q(|φ|), ∃z ∈ {0, 1}q(|φ|) such that (φ, ψ, z) ∈ L′. (1)

Lecture 10: September 28, 2021 3

Consider the polynomial q(m) = m − 1 and the language L′ of triples (φ, ψ, z) such that the
following holds: φ, ψ are DNF formulas over the same set of variables, z is an assignment to those
variables, and both |ψ| < |φ| and φ(z) 6= ψ(z) hold. Given an appropriate encoding of DNFs, it
is straightforward to verify that Equation (1) holds. Furthermore, it is easy to evaluate DNFs in
polynomial time. Thus L′ ∈ P, completing the proof.

The polynomial hierarchy Above, we demonstrated a language L ∈ ∀NP that is not known to
be in NP. This suggests that the containment ∀∃P ⊇ ∃P may be strict, just like how the containment
∃P ⊇ P may be strict - indeed, notice that the latter is exactly the question of whether P = NP.
More generally, it is natural to ask how the power of P grows as we prepend more and more
alternating quanitifers. Such motivates the definition of the polynomial hierarchy, which we are
finally ready to formally define. (Below, we take the natural numbers N to include 0.)

Definition 1.6 (Polynomial hierarchy). First, we define the complexity classes Σ0 = Π0 := P.
Then, for every i ∈ N, we define the classes Σi+1 := ∃Πi and Πi+1 = ∀Σi. The polynomial
hierarchy PH is then defined as follows.

PH :=
⋃
i∈N

Σi =
⋃
i∈N

Πi.

The following diagram (inspired by the Lecture 11 notes) gives a visual representation of the
polynomial hierarchy, which may be easier to remember.

P Π0Σ0 ==

Π1Σ1 ∀Σ0∃Π0 ==

Π2Σ2 ∀Σ1∃Π1 ==

Π3Σ3 ∀Σ2∃Π2 ==

...

In the diagram above, arrows indicate containment: these simply follow from our earlier observa-
tions that prepending an existential or for-all quantifier to a complexity class C can only make it
more powerful. Furthermore, inspired by the above diagram, for every i ∈ N we call the complexity
class Σi ∪Πi the ith level of the polynomial hierarchy.

As can be seen, the only subclasses of the polynomial hierarchy for which a containment relation-
ship is unknown are subclasses that appear in the same level. Indeed, resolving these containment
relationships remain some of the most important open problems in theoretical computer science
(see the next lecture for more details). Still, there is at least one relationship we can establish
between classes that appear at the same level of the hierarchy.

Claim 1.7. For all i ∈ N, it holds that Σi = coΠi.

Proof. We briefly remind the reader that for a complexity class C, the class coC contains a language
L iff its complement L is in C. We proceed by induction.

Lecture 10: September 28, 2021 4

The base case i = 0 is straightforward: Σ0 = Π0 = P, so we just need L ∈ P ⇐⇒ L ∈ P. This
is clearly true, just by swapping the accept/reject states of the Turing machine computing L or L.

For i > 0, we first prove L ∈ Σi =⇒ L ∈ coΠi. Towards this end, note L ∈ Σi =⇒ L ∈ ∃Πi−1,
and thus there is some language L′ ∈ Πi−1 and polynomial q such that

x ∈ L ⇐⇒ ∃y ∈ {0, 1}q(|x|) such that (x, y) ∈ L′.

Negating both sides of the implication, and using the definition of set complement, we get

x ∈ L ⇐⇒ ∀y ∈ {0, 1}q(|x|) it holds that (x, y) ∈ L′.

Since L′ ∈ coΠi−1, we get that L ∈ ∀coΠi−1. By the induction hypothesis, L ∈ ∀Σi−1, and we
know ∀Σi−1 = Πi. Thus L ∈ Πi, or rather L ∈ coΠi, as desired.

We can prove L ∈ coΠi =⇒ L ∈ Σi in a similar manner. Pick any L ∈ coΠi and note
L ∈ coΠi =⇒ L ∈ Πi =⇒ L ∈ ∀Σi−1 =⇒ L ∈ ∀coΠi−1, where the last line follows by the
induction hypothesis. Thus there is some L′ ∈ coΠi−1 and polynomial q such that

x ∈ L ⇐⇒ ∀y ∈ {0, 1}q(|x|) it holds that (x, y) ∈ L′.

Negating both sides of the implication, and using the definition of set complement, we get

x ∈ L ⇐⇒ ∃y ∈ {0, 1}q(|x|) such that (x, y) ∈ L′.

Since L′ ∈ Πi−1, we get that L ∈ ∃Πi−1 and thus L ∈ Σi, as desired.

Finally, whenever a new complexity class is introduced, asking about the hardest problems
in that class can help us understand how it interacts with existing classes from the complexity
landscape. In other words, now that we have introduced the polynomial hierarchy and the rich
subclasses from which it is built, we would like to know if we can find problems that are complete
for these classes. As it turns out, there are a very natural family of problems that do exactly this.
We start by introducing them, below.

Definition 1.8 (ΣiSAT). For any fixed i ∈ N, the language ΣiSAT ⊆ {0, 1}∗ consists of all quan-
tified Boolean formulas Φ of the form

∃y1∀y2 . . . Qiyiφ(y1, y2, . . . , yi),

where each yi is a vector of Boolean variables, Qi = ∃ if i is odd and Qi = ∀ otherwise, φ is a
Boolean formula, and the entire sentence Φ is true.

Definition 1.9 (ΠiSAT). For any fixed i ∈ N, the language ΠiSAT ⊆ {0, 1}∗ consists of all quan-
tified Boolean formulas Φ of the form

∀y1∃y2 . . . Qiyiφ(y1, y2, . . . , yi),

where each yi is a vector of Boolean variables, Qi = ∀ if i is odd and Qi = ∃ otherwise, φ is a
Boolean formula, and the entire sentence Φ is true.

To conclude this section, we show that the above definitions provide complete problems for
every subclass in the polynomial hierarchy.

Theorem 1.10. For any i ∈ N, the language ΣiSAT is Σi-complete under polynomial time Karp
reductions, and the language ΠiSAT is Πi-complete under polynomial time Karp reductions.

Lecture 10: September 28, 2021 5

Proof. We only prove the result for ΣiSAT, as the proof for ΠiSAT is nearly identical. Towards this
end, we need to prove ΣiSAT ∈ Σi, and that every L ∈ Σi is poly-time Karp reducible to ΣiSAT.

To prove ΣiSAT ∈ Σi, we simply need a polynomial time TM M and polynomial q such that

Φ ∈ ΣiSAT ⇐⇒ ∃y′1 ∈ {0, 1}q(|Φ|)∀y′2 ∈ {0, 1}q(|Φ|) . . . Qiy′i ∈ {0, 1}q(|Φ|)M(Φ, y′1, y
′
2, . . . , y

′
i) = 1,

where Qi = ∃ if i odd and Qi = ∀ otherwise. Setting q to be the identity function, it is easy to
construct such an M : simply have it evaluate φ (contained in Φ), plugging in each y′i for yi (and
ignoring the |y′i| − |yi| ≥ 0 extra bits at the end of y′i).

To prove each L ∈ Σi is poly-time Karp reducible to ΣiSAT, fix some L ∈ Σi and recall there
must be some poly-time TM M and polynomial q such that

x ∈ L ⇐⇒ ∃y′1 ∈ {0, 1}q(|x|)∀y′2 ∈ {0, 1}q(|x|) . . . Qiy′i ∈ {0, 1}q(|x|)M(x, y′1, y
′
2, . . . , y

′
i) = 1,

where Qi = ∃ if i is odd and Qi = ∀ otherwise. By applying the Cook-Levin Theorem to M or
its negation, there is a poly-time transformation f with input x that outputs a formula φx such
that M(x, y′1, y

′
2, . . . , y

′
i) = 1 if and only if Q′′i y

′′φx(y′1, y
′
2, . . . , y

′
i, y
′′) is true, where Q′′i matches the

quantifier Qi. Thus

x ∈ L ⇐⇒ ∃y′1∀y′2 . . . Qiy′iQ′′i y′′φx(x, y′1, y
′
2, . . . , y

′
i, y
′′).

Merging Qi and Q′′i turns the right-hand-side into an instance of ΣiSAT. Finally, we can bootstrap
f to create a poly-time computable function f ′ that outputs the entire right-hand-side (instead of
just φx), so that x ∈ L ⇐⇒ f ′(x) ∈ ΣiSAT, as desired.

2 Alternating Turing Machines

We now introduce a new type of Turing machine, which generalizes our previous definitions of Turing
machines (see Lectures 1 and 2) and captures problems appearing in the polynomial hierarchy.

Definition 2.1 (Alternating Turing Machine (ATM)). An alternating Turing machine (ATM) M
is just like a standard Turing machine (as defined in Lecture 1), except for three key differences:

• Like an NDTM, an ATM has two transition functions δ0, δ1, instead of just one.

• Like an NDTM, an ATM has an additional special state qaccept, in addition to the standard
special states qstart, qhalt.

• Unlike an NDTM, each state in the ATM (except for qhalt and qaccept) is labeled with the
existential quantifier (∃) or the for-all quantifier (∀).

Next, we must specify how an ATM computes, and provide a meaningful definition of runtime.

Definition 2.2 (Computation and runtime of ATMs). Given an input x, the computation of an
ATM M starts at qstart and proceeds until reaching qhalt or qaccept, choosing at each step whether to
transition according to δ0 or δ1 (just like an NDTM). The runtime of an ATM M on input x is
at most T if M halts after at most T steps, no matter what sequence of transition functions were
selected. The runtime of an ATM M is T (n) if the runtime of M on any input x of length n is at
most T (n).

Finally, we must define what it means for an ATM to accept an input string. While an NDTM
is defined to accepted a string whenever there exists a sequence of transition function choices that
lead to qaccept, the analogous definition for ATMs is slightly more nuanced.

Lecture 10: September 28, 2021 6

Definition 2.3 (Accepting condition for ATMs). The ATM M accepts x if the following holds.
Let GM,x be the configuration graph of M on input x.2 For each node Caccept in GM,x representing
a configuration in state qaccept, mark that node accept. Mark each node Creject in state qhalt as reject.
Then, for each unmarked node C with two marked children:

• If C is in a state labeled ∃, mark it as accept if at least one of its children is marked accept,
and mark it reject otherwise.

• If C is in a state labeled ∀, mark it as accept if both of its children are marked accept, and
mark it reject otherwise.

Continue marking nodes in this manner until the node Cstart in state qstart is marked. We say that
M accepts x if and only if Cstart is marked accept.

Now that we have a complete definition of alternating Turing machines, we are ready to discuss
their relationship to the polynomial hierarchy. For this, we need to lift the standard definitions for
time complexity to the alternating setting, which we do in the natural way.

Definition 2.4. For any function T : N→ N and language L ⊆ {0, 1}∗, we say L ∈ ATIME(T (n))
if there is a constant C > 0 and ATM M running in time C · T (n) that decides L.

As expected, we can then define an alternating version of the class P.

Definition 2.5. The complexity class AP of alternating polynomial time is defined as

AP :=
⋃
C∈N

ATIME(nC).

Now, to understand how alternating Turing machines are related to the polynomial hierarchy,
we consider various restrictions to the former model. First, consider requiring that every state in
the ATM be labeled with ∃ (see Definition 2.1). It is straightforward to show that such restricted
ATMs are exactly NDTMs. Thus, if we define AP∃ to be the class of languages decidable by such
restricted ATMs running in polynomial time, we clearly get the following observation.

Observation 2.6. AP∃ = NP.

Similarly, we can imagine requiring that every state in the ATM be labeled with ∀. In this case,
we can define AP∀ to be the class of languages decidable by these ATMs in polynomial time, and
obtain the following.

Observation 2.7. AP∀ = coNP.

More generally, we can establish a relationship between ATMs and every level of the polynomial
hierarchy by restricting the number of quantifier alternations on any computation path of the ATM.
Formally, we can say that an ATM M is a (∃, i)-ATM if qstart is labeled ∃, and for any input x
the following holds: let GM,x be the configuration graph of M on x. Then for every path from the
starting configuration to a halting or accepting configuration, there are at most i− 1 alternations
(i.e., the quantifier label of the state changes at most i− 1 times). If we let AP∃,i denote the class
of languages decidable by (∃, i)-ATMs in polynomial time, the following observation is relatively
straightforward. (Below, we take the natural numbers to begin at 1.)

2GM,x is a directed graph where all non-leaf nodes have out-degree 2. Each node C corresponds to a configuration
of the machine, and there is a directed edge (C,C′) if the machine can transition from configuration C to configuration
C′ using either δ0 or δ1. See Lecture 6 notes for more detail.

Lecture 10: September 28, 2021 7

Observation 2.8 (Observation 2.6, general version). AP∃,i = Σi, for every i ∈ N.

Similarly, we can define (∀, i)-ATMs and AP∀,i in the natural way, and observe the following.

Observation 2.9 (Observation 2.7, general version). AP∀,i = Πi, for every i ∈ N.

Thus, alternating Turing machines are closely connected to the polynomial hierarchy, in the
sense that we can exactly characterize each subclass with appropriately restricted ATMs running in
polynomial time.3 To conclude this lecture, we show that alternating Turing machines characterize
a completely different (deterministic) complexity class, in a result that is perhaps much more
surprising.

Theorem 2.10 (Alternating time equals deterministic space).

AP = PSPACE.

Before proving this theorem, we remark that PH ⊆ AP since we saw above that each Σi,Πi ⊆ AP.
However, it is not known whether PH ⊇ AP, the reason being that each language in PH is allowed
to leverage a constant number of alternations, whereas languages in AP are allowed to make use of
an unbounded number of alternations (i.e., the number of alternations can grow with input length).
Indeed, we believe that PH 6⊇ AP, as this would imply PH = PSPACE, which would lead to a
collapse of the polynomial hierarchy (see Lecture 11 notes for more details). We now proceed to
prove Theorem 2.10, concluding the lecture.

Proof of Theorem 2.10. We start by sketching AP ⊇ PSPACE. Towards this end, recall the lan-
guage TQBF, which consists of all true quantified Boolean formulas. Such formula are of the form
Φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn), where each Qi ∈ {∃,∀}, each xi is a Boolean variable, φ is
a Boolean formula, and Φ ∈ TQBF if and only if Φ is true. Recall that TQBF is PSPACE-complete
under polynomial-time Karp reductions, and thus it suffices to show that TQBF ∈ AP. This is
almost immediate from definitions: to construct an ATM M that decides TQBF, simply label qstart
with the quantifier Q1, and then at every step i, have the transition function δ0 fix xi to 0, have
δ1 fix xi to 1, and have both transition functions lead to a state labeled Qi+1 (where we define
Qn+1 = ∃ for notational convenience). Then, at step n + 1, use the fixings of x1, x2, . . . , xn to
deterministically evaluate φ(x1, x2, . . . , xn) in polynomial time.

We now sketch AP ⊆ PSPACE. This is similar to the proof we’ve seen for TQBF ∈ PSPACE
(from Lecture 7 notes). The key idea is to reuse space. More formally, let M be an ATM running
in time nC for some constant C > 0. We wish to construct a deterministic TM M ′ running in
polynomial space, which simulates M . Towards this end, note that for any α ∈ {0, 1}∗ of length
at most nC , we can construct the deterministic Turing machines ACCEPTα,REJECTα,EXISTSα,
defined as follows. On input x, each of these TMs simulates M ′ on |α| steps, picking transition
function δαi at step i. ACCEPTα outputs 1 iff an accepting state (qaccept) is reached, REJECTα
outputs 1 iff a rejecting state (qreject) is reached, EXISTSα outputs 1 iff a state labeled ∃ is reached.

Finally, we can define a deterministic Turing machine HELP, which takes input x, α, and is
defined as follows. First, it accepts if ACCEPTα(x) outputs 1, and rejects if REJECTα(x) outputs
1. Otherwise, it checks EXISTSα(x). If the answer is 1, then it computes and returns HELP(x, α ◦
0) ∨ HELP(x, α ◦ 1). Otherwise, it computes and returns HELP(x, α ◦ 0) ∧ HELP(x, α ◦ 1).

Finally, we let ε denote the empty string, and define M ′(x) = HELP(x, ε).

3Technically, we never described how to characterize P with ATMs. This can easily be done by forcing δ0 = δ1.

Lecture 10: September 28, 2021 8

It is straightforward to show that M ′ decides the same language as M , and that M ′ can be
implemented on a deterministic TM. To see why M ′ can be implemented in polynomial space, note
that the two recursive calls in HELP can reuse the same space, simply by waiting for one of them to
return before starting the other. All that needs to be remembered is the current state of α in the
recursion stack, and the corresponding sequence of quantifiers (or rather, sequence of ∨,∧). Since
|α| ≤ nC , and since every other non-recursive function call clearly uses polynomial time and thus
polynomial space, we get that M ′ runs in polynomial space, as desired.

	The Polynomial Hierarchy
	Alternating Turing Machines

