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1 Review

Recall that by following the analysis of [1] and combining the mixture of 2-Poisson model with
the Robertson-Spärck Jones scoring function [2] we obtained the following scoring formula for a
document d with the term frequency vector ~d:

scoreq(d) =
∏

j: q[j]>0

d[j]>0

trj + (1 − trj)
(

µj

τj

)d[j]
eτj−µj

tgj + (1 − tgj)
(

µj

τj

)d[j]
eτj−µj

×
tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)

rank
=

∑

j: q[j]>0

d[j]>0

log

[

trj + (1 − trj)
(

µj

τj

)d[j]
eτj−µj

tgj + (1 − tgj)
(

µj

τj

)d[j]
eτj−µj

×
tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)

]

(1)

where:

• τj and µj are the means of the Poisson distributions for the term vj in the on-topic and
off-topic case, respectively:

P (Aj = d[j]|Tj = y) = Poisson(τj) =
τ

d[j]
j

d[j]!
eτj (2)

P (Aj = d[j]|Tj = n) = Poisson(µj) =
µ

d[j]
j

d[j]!
eµj (3)

• trj is the probability of being on the topic of the term vj , given relevance:

trj = P (Tj = y|Rq = y) (4)

• tgj is the probability of being on the topic of the term vj in general:

tgj = P (Tj = y) (5)

• we maintain the assumption that all documents have equal length.
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For reference, we also repeat here the RSJ scoring function for the binary attributes case discussed
in the previous lectures:

RSJq(d) =
∏

j: q[j]>0

d[j]>0

P (Aj = 1|Rq = y)

P (Aj = 1)
×

1 − P (Aj = 1)

1 − P (Aj = 1|Rq = y)

rank
=

∑

j: q[j]>0

d[j]>0

log

[

P (Aj = 1|Rq = y)

P (Aj = 1)
×

1 − P (Aj = 1)

1 − P (Aj = 1|Rq = y)

]

(6)

Note that — as an advantage over the RSJ scoring function for the binary attributes case — (1) is
complex enough to account for the non-binary attributes case. The tradeoff is the presence of four
unknown parameters for each term (µj , τj, trj and tgj) which we can not directly estimate. This
makes this scoring function difficult to estimate and to use in practice.

2 Analysis of the scoring function

Acknowledging this problem we will now try to find a more tractable scoring function that has
approximately the same behavior as (1). For this purpose in the following we analyze the behavior
of the terms of (1)1 , seen as a functions of d[j]:

f(d[j]) = log

[

trj + (1 − trj)
(

µj

τj

)d[j]
eτj−µj

tgj + (1 − tgj)
(

µj

τj

)d[j]
eτj−µj

×
tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)

]

(7)

(a) For d[j] = 0 we have:

f(0) = log

[

trj + (1 − trj)e
τj−µj

tgj + (1 − tgj)eτj−µj
×

tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)

]

= log

[

trj + (1 − trj)e
τj−µj

tgj + (1 − tgj)eτj−µj
×

tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)
×

eτj−µj

eτj−µj

]

= log

[

trj + (1 − trj)e
τj−µj

tgj + (1 − tgj)eτj−µj
×

tgj + (1 − tgj)e
τj−µj

trj + (1 − trj)eτj−µj

]

= log(1) = 0 (8)

1Note that in these lecture notes we fix a problem with the presentation given in class: we analyze here the terms
of the log version of the scoring function (1) and, by doing so, we provide a better justification for the proposed
approximation.
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(b) For d[j] → ∞ the behavior of (7) is determined by the asymptotic value of
(

µj

τj

)d[j]
. Note that

it is natural to assume that µj < τj: we expect to encounter more query terms in on-topic

documents than in off-topic documents. Therefore, as d[j] → ∞ we have
(

µj

τj

)d[j]
→ 0 and:

f(d[j]) → log

[

tr

tg
×

tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)

]

. (9)

Making the additional assumption that µj − τj << 0, and thus eµj−τj ≃ 0, we have:

f(d[j]) → log

[

tr

tg
×

tgj eµj−τj + (1 − tgj)

trj eµj−τj + (1 − trj)

]

≃ log

[

tr

tg
×

(1 − tgj)

(1 − trj)

]

. (10)

Now, if we are also willing to accept that trj = P (Tj = y|Rq = y) ≈ P (Aj = 1|Rq = y)
and that tgj = P (Tj = y) ≈ P (Aj = 1) (i.e. that the probability of being on topic is ap-
proximated by the probability of containing the term indexing that topic) then (10) tells us
that, for d[j] → ∞, f(d[j]) approximates the terms of the RSJ weight (6). Knowing from
our previous analysis of the RSJ terms that they can be interpreted (under certain assump-
tions) as inverse document frequency2 we can conclude that in this limit case f(d[j]) → IDFj .

Figure 1: The monotonicity of the numerator num(d[j]) and of the denominator den(d[j]) of (7).

2We refer here to the logarithmic version of the inverse document frequency: IDFj = log(N/nj), where N is the
number of documents in the corpus and nj is the number of documents in witch the term vj occur.
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(c) For 0 < d[j] < ∞ we will analyze the numerator num(d[j]) and the denominator den(d[j])
of the argument of the log in (7) separately. Both num(d[j]) and den(d[j]) are exponentially
decreasing because µj < τj (as we discussed in (b)). Also, from (8) we know that at d[j] =
0 the numerator equals the denominator. By employing the same reasoning as in (b) for
num(d[j]) and den(d[j]) separately, we obtain the following linear horizontal asymptotes:

lim
d[j]→∞

num(d[j]) = trj × (1 − tgj) (11)

lim
d[j]→∞

den(d[j]) = tgj × (1 − trj). (12)

Assuming that for terms vj in the query the probability of being on the topic of vj is greater
for relevant documents than the probability of being on the topic of vj in general docu-
ments (i.e. trj > tgj), the asymptotic value of the numerator is greater than that of the
denominator, and thus num(d[j]) decreases slower than den(d[j]) as illustrated in Fig. 1.
Therefore, num(d[j])/den(d[j])) is monotonically increasing for 0 < d[j] < ∞ and, given the
monotonicity of the log function, f(d[j]) is monotonically increasing for 0 < d[j] < ∞.

Summing up our analysis, we conclude that the terms f(d[j]) of (1) are monotonically increasing
from 0 to a value identifiable with IDFj.
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Exercise

a) Suppose we are interested in finding out about the breeding habits of a certain species of
chipmunks, namely the alpine chipmunks. We construct the query “alpine chipmunks breed-
ing” and submit it to GoogleTM . Out of the obtained ranking we extract the following results:

Name Rank Address

Doc1 1 www.nps.gov/history/history/online books/grinnell/mammals63.htm

Doc2 2 animaldiversity.ummz.umich.edu/site/accounts/information/Tamias alpinus.html

Doc3 8 sfgate.com/cgi-bin/article.cgi?f=/c/a/2005/11/27/ING66FMV901.DTL

Doc4 21 ilmbwww.gov.bc.ca/risc/pubs/tebiodiv/pisc/piscml20-06.htm

where the “Rank” column refers to the ranking given by the search engine.

Take a quick look at these web-pages and judge their relative relevance to the query yourself.
Then rank them according to the following approximation of the 2-Poisson model scoring
function (first proposed in [1]):

scoreq(d) =
∑

j: q[j]>0

d[j]>0

d[j]

k + d[j]
× idfj (13)

and compare your results with the GoogleTM ranks and with your own expectations. Set
k = 1.5 and make an informed choice of the inverse document frequency idfj . Note that for
simplicity we are employing the version of the scoring function which assumes equal document
length — the documents above were selected to have roughly the same size.

b) Now let’s look more in detail at the term frequency related part of (13):

tfpartkj (d) =
d[j]

k + d[j]
(14)

In [1] Robertson and Walker motivated the choice for this expression by the fact that this
leads to a scoring function that has approximately the same behavior as the 2-Poisson model
score function. We claim that there is another aspect that makes this tfpart preferable over
other alternatives. Find and discuss this advantage and analyze the effects of modifying k,
going beyond the most obvious answer. Relate this discussion to our example.

c) In the lecture notes, in our analysis of the behavior of the factors of the 2-Poisson model
scoring function we assumed that µj − τj << 0 and therefore eµj−τj ≃ 0. Discuss a case when
this assumption does not hold and use our setting to exemplify this case.
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Solutions:

a) The GoogleTM ranking matches our intuition, except for the relatively high ranking of Doc3,
which only mentions alpine chipmunks as an example, and contains nothing related to their
breeding habits. We consider Doc4 to be more relevant than Doc3, given that it talks about
breeding habits of chipmunks (even though not about alpine chipmunks).

Given the indexing of the sum in (13), we only need to calculate d[j] and idfj for the terms
that appear both in the query and documents: “chipmunk” (we do not distinguish between
the singular and plural form),“alpine” and “breeding”. We calculate idfj using the formula:

idfj = ln
|C|

# docs in C containing vj
(15)

where C is the corpus from which the documents was retrieved: the set of English language
web-pages indexed by GoogleTM (approximate size: 4, 320, 000, 000 documents). We get the
denominators by searching for the individual terms and reading the approximate number of
indexed documents containing those words. The inverse document frequencies obtained this
way and the term frequencies are:

chipmunk(s) alpine breeding

idf 7.10 4.50 4.62

Doc1 38 19 2

Doc2 15 12 3

Doc3 3 5 3

Doc4 76 4 3

The ranking we obtain using the scoring function (13) is [Doc1,Doc2,Doc4,Doc3] which matches
our intuition:

Doc1 Doc2 Doc3 Doc4

Score 13.65 13.54 11.28 13.32

b) First we notice that k allows us to gauge the importance that (13) gives to term frequencies
(for values of k that are not overly large). To realize this we consider two documents d and f
in which a query term j has different frequencies: d[j] > f [j]. To see how tfpart contributes
to distinguishing these documents we look at:

tfpartkj (d) − tfpartkj (f) =
d[j]

k + d[j]
−

f [j]

k + f [j]
(16)

as a function of k. As can seen in Fig. 2, for k smaller than a certain value, tfpartkj (d) −

tfpartkj (f) is monotonically increasing: the larger the value of k, the more the gap between
the frequencies matters.

We can explain this behavior analytically by calculating the derivative of (16) with respect
to k:
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Figure 2: tfpartkj (d) − tfpartkj (f) as a function of k; the dashed line represents k∗ =
√

d[j]f [j],
the point where the function changes it monotonicity.

tfpartkj (d) − tfpartkj (f) =
d[j]

k + d[j]
−

f [j]

k + f [j]

=
k(d[j] − f [j])

(k + d[j])(k + f [j])

=
d[j] − f [j]

k + (d[j] + f [j]) + d[j]f [j]/k
(17)

(tfpartkj (d) − tfpartkj (f))′ =

(

d[j] − f [j]

k + (d[j] + f [j]) + d[j]f [j]
k

)

′

= −(d[j] − f [j])
1 +

(

d[j]f [j]
k

)

′

(

k + (d[j] + f [j]) + d[j]f [j]
k

)2

= −(d[j] − f [j])
1 − d[j]f [j]

k2

(

k + (d[j] + f [j]) + d[j]f [j]
k

)2 (18)
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Therefore, the derivative equals 0 only for k =
√

d[j]f [j], is positive for 0 < k <
√

d[j]f [j]
and is negative for k >

√

d[j]f [j] and thus (16) is increasing for 0 < k <
√

d[j]f [j] and
decreasing for 0 > k >

√

d[j]f [j].

However, there is a more interesting aspect of tfpart that is related to the order of magnitude
of the term frequencies. This can be understood by comparing tfpartkj (d) − tfpartkj (f) and

tfpartki (d) − tfpartki (f) for two query terms i and j such that d[i] >> d[j] and f [i] >> f [j].
In Fig. 3 we plot these as functions of k for d[i] = 50, f [i] = 10, d[j] = 5 f [j] = 3 and we
note that there is an interval of values of k for which the small difference between small mag-
nitude frequencies d[j] and f [j] matters more to the scoring function than the relatively big
difference between the high magnitude frequencies d[i] and f [i] (given equal inverse document
frequency).
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Figure 3: tfpartki (d) − tfpartki (f) (in blue) and tfpartkj (d) − tfpartkj (f) (in green) as a functions
of k; d[i] = 50, f [i] = 10, d[j] = 5, f [j] = 3

We can briefly explain this behavior analytically by observing in (17) that the term d[j]f [j] —
corresponding to the magnitude of the respective frequencies — appears in the denominator.
Comparing expression (17) for two query terms i and j such that d[i] >> d[j] and f [i] >> f [j]
and d[i] − f [i] ≥ d[j] − f [j]:
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tfpartkj (d) − tfpartkj (f) =
d[j] − f [j]

k + (d[j] + f [j]) + d[j]f [j]/k
(19)

tfpartki (d) − tfpartki (f) =
d[i] − f [i]

k + (d[i] + f [i]) + d[i]f [i]/k
(20)

we observe that for fixed small values of k the fact that d[i]f [i]/k >> d[j]f [j]/k (in the de-
nominator) undermines the effect of d[i]−f [i] ≥ d[j]−f [j] (in the numerator) and determines
tfpartki (d) − tfpartki (f) to be smaller than tfpartkj (d) − tfpartkj (f).
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Figure 4: Relative behavior of the scoring function with respect to k.

Using our example, we explain why such behavior might be considered intuitive and desired:
we know that Doc1 and Doc3 contain relatively many “chipmunk” terms, so we know that
they are on the topic of “chipmunks” and we do not care so much which one contains more
“chipmunk” terms; however, at this point we would like to know which of the documents
talks about “alpine chipmunks”, and therefore we put more emphasis on the small difference
in the frequency of “alpine”. And indeed, as seen in a), (13) ranks Doc1 higher than Doc4

even though Doc4 contains double the number of “chipmunk” terms and 24 more query terms
than Doc1: the tfpart behaves such that the relatively small magnitude difference between
the count of “alpine” terms matters more. A simple analysis of our inverse document frequen-
cies shows that this is not the effect of the idfj part of the scoring function. Also, if instead
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of tfpart we use the simple term frequency count tfj(d) = d[j], Doc4 ranks above Doc1.

In Fig. 4 the behavior of the complete scoring functions for different values of k is illustrated.
Confirming our first observation about the role of k, the difference between the score of Doc3

and the scores of all the other documents increases with k — the difference in term frequency
is taken more into account. Also, as a consequence of the impact that k has in the impor-
tance that the order of magnitude of the term frequencies has, we note that for k greater
than a certain value Doc4 ranks above Doc2 and that for small k Doc2 ranks higher than
Doc1 — for those values of k the fact that Doc2 has an extra “breeding” term is considered
more important than the 23 “chipmunk” and 7 “alpine” terms that Doc1 has in excess of Doc3.

c) As Robertson and Walker point out in [1], the assumption that eµj−τj ≃ 0 does not hold for
infrequent terms which we do not expect to have a high frequency in the results of our query.
In our case “breeding” is such a term: relevant documents contain just 2 − 3 occurrences of
this term, so even if the expected rate of terms “breeding” is almost zero in other documents,
the difference between µj and τj is not big enough to justify the assumption that eµj−τj ≃ 0.
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