
CS 674/INFO 630: Advanced Language Technologies Fall 2007

Lecture 7 — September 18

Lecturer: Lillian Lee Scribes: Nikos Karampatziakis & Ainur Yessenalina

1 Recap of the Previous Lecture

In Appendix A we show the correct derivation of the scoring function for the binary-attribute
variable case using the Croft-Harper assumptions. Last time we discussed two other deriva-
tions that also lead to the appearance of “IDF” in the scoring function (for binary attributes).
So what was the point of this discussion?

(a) A metapoint is to ask the questions: Why do people try to come up with new derivations
for IDF? Isn’t one derivation sufficient? First of all, because IDF is important. Secondly,
because it is possible to object to all three derivations.

(b) To show that the estimation of parameters is non-obvious even for simple models.

(c) Finally, to remind us to challenge old ideas.

2 Incorporating Term Frequencies

Apart from IDF, term frequencies are also important and we would like to incorporate
them into our scoring function. From now on, we will treat Aj as a random variable that
denotes the number of occurrences of term j in a document. So, what should P (Aj = a)
and P (Aj = a|Rq = y) be? In other words, how do we model the distributions of these
random variables? Here we have two options: continuous and discrete distributions. Picking
a discrete distribution seems more natural, because we are dealing with word counts. Now
we have to pick the kind of discrete distribution. Some natural options include:

(a) Uniform distribution. We have to rule out this distribution because we do not know the
upper-limit of the word counts.

(b) Multinomial distribution. As Casella and Berger note [2], the multinomial distribution
is a model for an experiment which consists of n independent trials and each trial results
in one of k distinct possible outcomes. A simple special case is the binomial, discussed
next, in which we consider each term separately of the others. (Recall that the scoring
function has already been decomposed into individual-term-based components). The
multinomial considers the counts for all k types “jointly”.
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(c) Binomial distribution. The underlying experiment consists of n independent Bernoulli
trials. Each trial has two possible outcomes: “success” (the word appears in the i-th
position of the text) and “failure” (otherwise). The binomial distribution is a distribution
over the number of successes in n trials and it has two parameters: n (number of trials)
and p (probability of success of each trial).

(d) Poisson distribution. As Casella and Berger note [2], suppose we are modeling a phe-
nomenon in which we are waiting for an occurrence of an event. Then the number of oc-
currences in a given time interval can sometimes be modeled by the Poisson distribution.
The Poisson distribution has one parameter λ, the arrival rate, and a meta-parameter,
the time interval or the length of the document in our case. We can model the arrival
rate of a term by stating that we expect this term to appear, say, three times within
every document (of the “unit-length” type).

Now we have to choose between the binomial and the Poisson distribution. We want to
have as few parameters as possible. Both distributions have one parameter that needs to
be estimated (p for the binomial and λ for the Poisson) so we cannot decide based on this
information. However, the binomial is seemingly analytically harder to work with since it
involves a sum and the calculation of binomial coefficients. It is also a well-known fact
that the Poisson(λ) distribution approximates the binomial(n, p) distribution as n →∞ and
p = λ

n
. Since we do have quite big documents and the occurrence of each word is a small

probability event (except for words such as “the”, “of” etc.), the Poisson approximation to
the binomial is valid. Thus, we will choose the Poisson distribution for our models.

3 A Straightforward Approach

For now we assume that we have documents of the same length, an assumption that we will
try to correct later. Suppose that for each term j we define ρj to be the expected number of
occurrences of term j in relevant documents and γj to be the expected number of occurrences
of term j in general documents. For a term j that appears in the query (q[j] > 0) we expect
that ρj > γj because a term that appears in the query is more likely to appear in relevant
documents than in general documents. Then assuming that p(Aj|Rq = y) ∼ Poisson(ρj)
and p(Aj) ∼ Poisson(γj) we can write

p(Aj = d[j]|Rq = y) =
ρ

d[j]
j

d[j]!
e−ρj , p(Aj = 0|Rq = y) = e−ρj ,

p(Aj = d[j]) =
γ

d[j]
j

d[j]!
e−γj , p(Aj = 0) = e−γj ,

and the scoring function becomes

∏
j:q[j],d[j]>0

ρ
d[j]
j

d[j]!
e−ρj

γ
d[j]
j

d[j]!
e−γj

× e−γj

e−ρj
=

∏
j:q[j],d[j]>0

(
ρj

γj

)d[j]
rank
=

∑
j:q[j],d[j]>0

d[j] log

(
ρj

γj

)
.
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We see the term frequency d[j] appearing in the sum. How about the log
(

ρj

γj

)
quantity?

Does it look like an IDF factor? We don’t have any data to estimate ρj and even if we
assume it is constant, 1

γj
still does not look like an IDF factor, unless we decide to estimate

γj by the number of documents that contain term j which is a very rough estimate. We will
leave the discussion of this simple model here and consider a different perspective.

4 A Generative Perspective

So far we have only considered the question “given that some documents are relevant, what
kind of characteristics do these documents have?”. This is called a discriminative approach.
We can have a generative approach if we think about the process that generates the docu-
ments in the corpus. Reasoning about this process may help us do inference better. When we
are looking at the term frequencies we are assuming that there is a correlation between term
counts and relevance. However, term counts are only proxies for relevance. For example,
when we do length normalization it is really because term frequencies are not the perfect
representation for how relevant the document is. So instead of looking at term frequencies
we can think what relevance really is. Relevance is about topics. A document is relevant if it
is about the same topic as the query, not necessarily if its term frequencies match the query.
Moreover, the way an author writes a document hinges on the topic the document is about.
A document about politics will generally use different words from a document about pets.
So, the authors decide what words will appear in their documents based on what they are
actually talking about.

We will follow the work of [1] and [3] and introduce a Poisson based “topic model”
(which is a very simplified version of the types of topic models used nowadays in machine
learning). We introduce the topic of the document as a primary object we will reason about
and more specifically we introduce binary random variables Tj indicating whether or not the
document is on the topic of term j. For now we assume again that the documents are of the
same length, an assumption that we will try to correct later. We can write the probability
distribution of Aj by marginalizing the joint distribution of Aj and Tj.

P (Aj = a) =
∑

t∈{y,n}

P (Aj = a|Tj = t)P (Tj = t)

where we assume
P (Aj = a|Tj = y) ∼ Poisson(τj)

P (Aj = a|Tj = n) ∼ Poisson(µj)

and we expect τj > µj because term j is more likely to appear in documents about its topic
than in documents which are not on its topic. Using this mixture of Poisson distributions
we can rewrite P (Aj = d[j]|Rq = y) as∑

t∈{y,n}

P (Aj = d[j], Tj = t|Rq = y) =
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∑
t∈{y,n}

P (Aj = d[j]|Tj = t, Rq = y)P (Tj = t|Rq = y).

The Aj can be assumed conditionally independent of Rq given Tj because the event that
term j appears d[j] times in the document “happened” before the query was issued and
when it happened it was based on whether the document was on the topic of term j or not.
Hence we can write

P (Aj = d[j]|Rq = y) =
∑

t∈{y,n}

P (Aj = d[j]|Tj = t)P (Tj = t|Rq = y)

Defining the probability that the document is on the topic of term j given that it is relevant
as trj = P (Tj = y|Rq = y) and the probability that the document is on the topic of term j
in general as tgj = P (Tj = y) we can get the following scoring function

∏
j:q[j],d[j]>0

trj + (1− trj)
(

µj

τj

)d[j]

eτj−µj

tgj + (1− tgj)
(

µj

τj

)d[j]

eτj−µj

× tgje
µj−τj + (1− tgj)

trjeµj−τj + (1− trj)

by dividing the numerator and the denominator of the original scoring function by τ
d[j]
j e−τj−µj .

This expression has many unknowns but we can still study it as a function of the term fre-
quency d[j]. Stay tuned . . .

5 Finger Exercises

1. In this exercise we will investigate the scoring functions we get by plugging in different
distributions in the place of Poisson using the approach in section 3. Suppose we can
use continuous distributions to model the term frequencies and we also don’t have
to worry about continuity corrections. Let us assume that the frequency of term j is
distributed with some distribution f whose unknown mean is µj for relevant documents
and νj for general documents.1 What is the scoring function in the following cases?

(a) f is the normal distribution with variance σ2
j .

(b) f is the double-exponential2 (Laplace) distribution with variance 2σ2
j .

(c) f is the exponential distribution. Assume P (Aj = 0) = limx→0+ f(x)

2. Let’s view the document as a vector of term frequencies and try an approach motivated
by the fact that we didn’t use the binomial distribution for our models. What happens

1Caveat: Some sort of “extrinsic” length normalization is needed, similar to the Poisson case, because a
“mean of five term occurrences” should presumably be relative to the length of the document.

2Note that the normal and double exponential distributions may allocate a significant amount of proba-
bility mass to negative counts and thus may not provide a realistic generative model for term occurrences.
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if we model the number of occurrences of all the terms in a document as a multinomial
distribution and we rank documents according to

P ( ~A = ~d|Rq = y)

P ( ~A = ~d)
(1)

where ~d is the vector of all term frequencies? Assume both the numerator and the
denominator are multinomially distributed but the probabilities of the outcomes are
different. For each term j we will have a probability θjg of occurrence in a general
document and a probability θjr of occurrence in a relevant document. Assume that:

• For the terms that don’t appear in the query, θjr = βθjg

• For the terms in the query, θjr = θjg + α

• The sum of the term frequencies in a document for the terms that don’t appear in
the query is δ. This is similar to assuming that the documents have equal lengths.

and α, β and δ are constants independent of the document and the term.3 What
estimate for the probability of a term in a general document can we use in order to get
an IDF in the final scoring function? Is it a good estimate?

3. Let’s assume that there are k topics t1, t2 . . . , tk in the corpus and each term j appears
in topic ti with probability θji. Define an appropriate embedding of terms into Rn and
estimate the θji using, for example, the EM algorithm to learn a mixture of gaussians
(or your favorite fuzzy clustering algorithm). In other words, terms are points in Rn

and topics are clusters of terms. What would be an appropriate generative model for
documents in this setting?

6 Solutions

1. Before we begin our derivations, we will discuss the distributions that we use to gain
some intuition on what kind of events they try to model. Figure 1 shows a plot of the
three distributions with mean 10 and where applicable σ = 1. We see that the normal
and double exponential have similar shapes with the mode equal to the mean and
most of their probability mass around the mean although the double exponential has
heavier tails than the normal. On the other hand the exponential distribution is neither
symmetric nor concentrated around its mean. Its mean and variance depend only on
one parameter and it allocates probability mass only to positive numbers. The normal
distribution is mostly used to model measurements of things that happen because many
small additive effects are contributing to them [2], the double exponential is practically

3We are willing to assume everything to make the analysis tractable. . .
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Figure 1: The normal(10,1), Laplace(10,1) and exponential(10) distributions.

used as an alternative to the normal4 and the exponential distribution is used to model
waiting times between events following a Poisson distribution. Our conclusion is that
none of these distributions are actually good models for the term counts but they may
still be useful.

(a) Recall the Normal distribution p(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . The scoring function becomes

∏
j:q[j],d[j]>0

1
σj

√
2π

e
−

(d[j]−µj)2

2σ2
j

1
σj

√
2π

e
−

(d[j]−νj)2

2σ2
j

×
1

σj

√
2π

e
−

ν2
j

2σ2
j

1
σj

√
2π

e
−

µ2
j

2σ2
j

=

∏
j:q[j],d[j]>0

e
−

(d[j]−µj)2+ν2
j

2σ2
j

+
(d[j]−νj)2+µ2

j

2σ2
j =

∏
j:q[j],d[j]>0

e

d[j](µj−νj)

σ2
j

rank
=

∑
j:q[j],d[j]>0

d[j]
(µj − νj)

σ2
j

.

4For example, a Bayesian interpretation of ridge regression is that we do linear regression with a normal
prior on the coefficients while a Bayesian interpretation of the Lasso is that we do linear regression with a
Laplace prior on the coefficients [4].
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We see that the term frequency comes up in the formula, but not anything resem-
bling the IDF. Note that the Poisson model naturally yielded an IDF factor. Each
term j such that q[j] > 0, d[j] > 0 is weighted by the difference µj − νj which we
expect to be positive. The bigger this difference, the more weight term j will get.

(b) For the Laplace distribution p(x) = 1
2σ

e−
|x−µ|

σ , the scoring function becomes

∏
j:q[j],d[j]>0

1
2σj

e
−
|d[j]−µj |

σj

1
2σj

e
−
|d[j]−νj |

σj

×
1

2σj
e
−

νj
σj

1
2σj

e
−

µj
σj

=

∏
j:q[j],d[j]>0

e
−|d[j]−µj |+|d[j]−νj |−νj+µj

σj
rank
=

∑
j:q[j],d[j]>0

−|d[j]− µj|+ |d[j]− νj| − νj + µj

σj

We have three cases

−|d[j]− µj|+ |d[j]− νj| − νj + µj

σj

=


0 if d[j] < νj < µj
2(d[j]−νj)

σj
if νj < d[j] < µj

2(µj−νj)

σj
if νj < µj < d[j]

This scoring function is funny because when the term frequency is less than what
we expect even for general documents it doesn’t contribute to the scoring function.
When the term frequency is somewhere between what we expect for relevant and
general documents, it contributes to the score by the amount of the difference from
the mean of general documents. When the term frequency is more than what we
expect to find in relevant documents the contribution is a constant independent
of d[j] (resistance to spam?). Also notice that µj appears explicitly in only one
case which makes it easy to provide approximations to the scoring function. For
example, if we assume that we always have d[j] < µj then the scoring function can
be easily evaluated.

(c) Finally the scoring function for the exponential distribution p(x) = 1
µ
e−

x
µ , x > 0

becomes

∏
j:q[j],d[j]>0

1
µj

e
− d[j]

µj

1
νj

e
− d[j]

νj

×
1
νj

limx→0+ e
− x

νj

1
µj

limx→0+ e
− x

µj

=
∏

j:q[j],d[j]>0

e
d[j]
νj
− d[j]

µj
rank
=

∑
j:q[j],d[j]>0

d[j]
µj − νj

µjνj

Despite the differences between the normal and the exponential, this scoring func-
tion looks like the one from (a). Here, we divide by the geometric mean µjνj of
the variances (µ2

j and ν2
j ) instead of the single variance that we had in (a).
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2. The probability distribution of the multinomial distribution is

P ( ~A = ~d) =
(
∑m

j=1 d[j])!∏m
j=1 d[j]!

m∏
j=1

θ
d[j]
j

where θj is the probability of outcome j (term j in our case). Plugging in the multino-
mial in (1) we get

(
Pm

j=1 d[j])!
Qm

j=1 d[j]!

∏m
j=1 θ

d[j]
jr

(
Pm

j=1 d[j])!
Qm

j=1 d[j]!

∏m
j=1 θ

d[j]
jg

=
m∏

j=1

(
θjr

θjg

)d[j]

=
∏

j:d[j]>0

(
θjr

θjg

)d[j]

=

∏
j:d[j]>0,q[j]=0

(
θjr

θjg

)d[j] ∏
j:d[j]>0,q[j]>0

(
θjr

θjg

)d[j]

=

β
P

j:q[j]=0 d[j]
∏

j:d[j]>0,q[j]>0

(
θjr

θjg

)d[j]

= βδ
∏

j:d[j]>0,q[j]>0

(
θjr

θjg

)d[j]
rank
=

∑
j:d[j]>0,q[j]>0

d[j] log

(
θjr

θjg

)
=

∑
j:d[j]>0,q[j]>0

d[j] log

(
1 +

α

θjg

)
.

Now if we use the estimate
θ̂jg =

nj

N

where nj is the number of documents that contain term j and N is the number of
documents in the corpus then the scoring function will have an IDF∑

j:d[j]>0,q[j]>0

d[j] log

(
1 +

αN

nj

)
.

However this estimate of θjg is very rough compared to something like:

θ̂jg =
1

|C|
∑
d∈C

TFj(d)∑
k TFk(d)

where the sum in the denominator is over all terms in document d and C is the corpus.

A Correction for the Previous Lecture

Let us recall the scoring function from the previous lecture:∏
j:q[j]=1

d[j]=1

P (Aj = d[j]|Rq = y)

P (Aj = d[j])
× P (Aj = 0)

P (Aj = 0|Rq = y)
(2)
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Last time, for the binary-attribute variable case we said that the Croft-Harper assumption
was to set for all attributes Aj that are shared between the query and the document

P (Aj = 1|Rq = y) = α,

where α is a constant ∈ [0, 1]. However α is really a function of the document d, the query
q and the attribute Aj since it is a constant only for the shared attributes, so we should
have written it as αd,q,j. To see why this gives rise to a potentially different scoring function,
remember that Croft and Harper set

P (Aj = 1) =
nj

N
, P (Aj = 0) = 1− nj

N

where nj is the number of documents that have attribute Aj and N is the total number of
documents, and notice that taking the log of (2) leads to∑

j:q[j]=1
d[j]=1

log

((
N

nj

− 1

)
αd,q,j

1− αd,q,j

)
=

∑
j:q[j]=1

d[j]=1

log

(
N

nj

− 1

)
+

∑
j:q[j]=1

d[j]=1

log
αd,q,j

1− αd,q,j

so we cannot ignore the quantity
αd,q,j

1−αd,q,j
, like we did last time. But, if we make the additional

assumption that αd,q,j = 1
2

for the shared attributes, then we can drop the second sum and
derive the scoring function that we got last time.
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