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1 Recall

For any given query q and document d in a corpus C, we use the following scoring function to rank
documents:

P (Rq = y | ~A = ~d) rank=
∏

j:q[j] 6=0,

d[j] 6=0

(
P (Aj = d[j] | Rq = y)

P (Aj = d[j])
× P (Aj = 0)

P (Aj = 0 | Rq = y)

)

Note that the above scoring function was reached by applying the following strategies. See previous
lecture for details.

• Bayes flip: condition on (relatively) more information

• reduce the number of unknowns (discard document-independent quantities)

• desparsify by “factoring” (linked dependence)

In section 2 we describe the binary attribute assumption made by Robertson and Spärck Jones
(RSJ). In sections 3, 4 and 5 we will present several models for the occurrence probability of query
terms in relevant documents.

2 Binary attribute assumption

In [3], RSJ propose binarization of the attribute vector ~A. This allows us to rewrite our scoring
function as follows:

P (Rq = y | ~A = ~d) rank=
∏

j:q[j]=1,

d[j]=1

(
P (Aj = 1 | Rq = y)

P (Aj = 1)
× 1− P (Aj = 1)

1− P (Aj = 1 | Rq = y)

)

3 Constant model

Unfortunately, our scoring function still has two unknowns per attribute, namely P (Aj = 1) and
P (Aj = 1 | Rq = y). In [1], Croft and Harper (CH) propose solutions for both unknowns. For the
unconditioned attribute occurrence probability:

P̂ (Aj = 1) =
nj

N
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where nj is the number of documents in the corpus for which attribute j occurs and N is the total
number of documents in the corpus.1

For the attribute occurence probability of query terms in relevant documents, CH propose:

P̂ (Aj = 1 | Rq = y) = αd,q,j

where αd,q,j ∈ [0, 1] is the same constant for all documents d and queries q where the jth attribute
is exhibited by both.

Question

After making the above substitutions, what does the scoring function look like? How does this
scoring function relate to the Vector Space Model (VSM) discussed in previous lectures?

Answer

Given our scoring function from section 2, we can make substitutions for P (Aj = 1) and P (Aj =
1 | Rq = y) as follows:

∏
j:q[j]=1,

d[j]=1

(
P (Aj = 1 | Rq = y)

P (Aj = 1)
× 1− P (Aj = 1)

1− P (Aj = 1 | Rq = y)

)

=
∏

j:q[j]=1,

d[j]=1

(
αd,q,j

nj

N

×
N−nj

N

1− αd,q,j

)

=
∏

j:q[j]=1,

d[j]=1

(
N

nj
− 1
)
×
(

αd,q,j

1− αd,q,j

)

For simplicity, αd,q,j = 0.5 is often used, giving the following scoring function:

∏
j:q[j]=1,d[j]=1

(
N

nj
− 1
)

Notice that the quantity
(

N
nj
− 1
)

looks like inverse document frequency (IDF). In fact, we can
cleverly rewrite the above scoring function to derive a matching function similar to ones used in the

1Also note that P̂ (Aj = 1) ≈ P̂ (Aj = 1 | Rq = n) since most documents in the corpus are probably not relevant
to our given query. We make this observation because CH were working with RSJ’s original derivation in which a

different initial scoring function, log
�
P (Rq = y | ~A = ~d) / P (Rq = n | ~A = ~d)

�
, was employed. We chose our scoring

function, P (Rq = y | ~A = ~d), because it avoids the need for this extra approximation.
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vector space model:

∏
j:q[j]=1,

d[j]=1

(
N

nj
− 1
)

rank= log

 ∏
j:q[j]=1,

d[j]=1

(
N

nj
− 1
)

=
∑

j:q[j]=1,

d[j]=1

log
(

N
nj
− 1
)

=
m∑

j=1

(
q[j]× d[j]× log

(
N
nj
− 1
))

Note that we have the binary analog of term frequency (TF) appearing—namely, the binary-valued
d[j]. Hence, we have what can be called a TF-IDF–like term weight. This derivation is often referred
to as the theoretical motivation for IDF.

4 Hyperbolic model

In [4], Robertson and Walker (RW) criticize the P̂ (Aj = 1 | Rq = y) = αd,q,j assumption. They

observe that log
(

N
nj
− 1
)

is negative when N
nj
− 1 < 1. Thus, for attributes that are shared by a

document d and query q, we end up with a negative score in situations where nj > N
2 .

In general, RW observe that the problem of negative weights (when the log version of the matching
function is used) can be avoided if our estimates obey the following condition:

P̂ (Aj = 1 | Rq = y)
P̂ (Aj = 1)

≥ 1

⇒ P̂ (Aj = 1 | Rq = y)
nj

N

≥ 1

⇒ P̂ (Aj = 1 | Rq = y) ≥ nj

N
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Note that the preceeding condition implies that:

1− P̂ (Aj = 1)
1− P̂ (Aj = 1 | Rq = y)

=
P̂ (Aj = 0)

P̂ (Aj = 0 | Rq = y)
≥ 1

Thus, the product of the above two terms (our term weight) is also greater than or equal to 1.

Question

What are some possible choices for P̂ (Aj = 1 | Rq = y)?

Answer

Recall that we want our estimation to never fall below nj

N . Some possibilities are:

• Try P̂ (Aj = 1 | Rq = y) = 1. But this is clearly unrealistic; also after substitution,

1− P (Aj = 1)
1− P (Aj = 1 | Rq = y)

results in a division by zero.

• Try P̂ (Aj = 1 | Rq = y) = nj

N . Intuitively, if we want to design as simple a model as
possible, noting that the occurrence probability of query terms in relevant documents must be
greater than or equal to the occurrence probability of query terms in the corpus, estimating
P̂ (Aj = 1 | Rq = y) = P̂ (Aj = 1) might make sense. However, after substitution we have:∏

j:q[j]=1,

d[j]=1

1 = 1

thereby assigning an equal score to all documents that share any attribute j with the query q,
which is clearly undesireable for obtaining good ranks.

• RW claim that finding a straight line solution is “intractable.” They instead propose:

P̂ (Aj = 1 | Rq = y) =
1

1 + N−nj

N

=
N

2N − nj

In addition to satisfying our conditions, this solution has the nice benefit of simplifying the
ranking function to an IDF:

P (Rq = y | ~A = ~d) =
∏

j:q[j]=1,

d[j]=1

 N
2N−nj

nj

N

×
N−nj

N
N−nj

2N−nj


=

∏
j:q[j]=1,

d[j]=1

N

nj
(IDF)

But the RW solution offers no clear justification for using this particular function.
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5 Lift model

In [2], Lee questions RW’s original claim that a “straight line” model is “intractable.” Lee proceeds
by claiming that in general, and as is true of RW’s estimate, P̂ (Aj = 1 | Rq = y) should in fact
be strictly greater than P̂ (Aj = 1) = nj

N , i.e., given that a document is relevant to a query, the
occurrence probability of query terms in relevant documents should be greater than the occurrence
probability of query terms in the corpus. Given our previous constraints, Lee proposes the following:

P̂ (Aj = 1 | Rq = y) =
nj + L

N + L

where L in the numerator corresponds to the “lift” given to documents known to be relevant (the
L in the denominator is to ensure that the estimate is bounded above by 1). After substitution we
have:

P (Rq = y | ~A = ~d) =
∏

j:q[j]=1,

d[j]=1

(
1 +

L

nj

)

which is IDF-like when N is substituted for L.

Question

Suppose that L is a function of nj . Using Lee’s lift model, provide a justification for RW’s solution.

Answer

We claim that the RW solution can be explained by Lee’s model with L = N − nj :

P̂ (Aj = 1 | Rq = y) =
nj + L

N + L

=
nj + (N − nj)
N + (N − nj)

=
N

2N − nj

Namely, for any shared attribute, the lift given to a document known to be relevant to a query is
equal to the number of documents that do not possess that attribute. The intuitive justification for
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this is that query terms that are rare in the corpus are going to be the most helpful in discriminating
relevant from non-relevant documents (since few documents will have these rare terms). Thus, the
lift should be proportional to the rarity of the attribute in the corpus. This provides a good intuitive
justification for the RW solution.
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