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Introduction and Motivation

Today's lecture notes cover pivoted document length normalization by Singhal, Buckley, and Mitra from 
SIGIR '96.  Before we dive into the details, we will review our classic VSM (vector space model) ad hoc 
information retrieval derivation1. 

Our information retrieval goal is to rank documents (which are elements of a corpus) by the notion of 
relevance to the query, q.  The query, q, expresses the user's information needs.  The vector space 
model represents documents (d) in a corpus as vectors, each entry of which corresponds to a term.  
Each term is an element of the corpus vocabulary.  The vocabulary might be the set of all words, 
phrases, or units of observation occurring in the document, but sometimes the set of terms is more 
restricted (see Porter Stemming for an example).  The document vector's elements are term weights, 
d[1],...,d[m], with each element corresponding to a weight for the document's use of vocabulary terms 
v1,...,vm.

 
The document vector's term weights are, by consensus, formed from three components:

 
In the above equation,

• tfd(j) is some function based on the term frequency within the document d 
• idf(j) is inversely related to the number of documents in C that contain vj

The term-weighting component is intended to measure whether the term is a good characterizer for the 
document, and it is used within our match (or scoring) function:

 
Unfortunately, the term-weighting scheme we have developed can unfairly advantage long documents 
in two ways:

(1) term frequency 'tf' counts are bigger in larger documents because there is a larger pool of 



word positions to choose from.
(2) there are more non-zero term frequencies ('tf') because the probability of any word in the 
vocabulary appearing in a long document increases relative to short documents.

We wish to avoid a match function which has a bias towards producing higher relevance rankings for 
long documents over shorter documents, if the shorter documents are actually more relevant.  
Therefore, normalization is used to compensate within the match function for this bias.

In the last lecture, we reviewed two normalization methods, L1-normalization and L2-normalization, for 

correcting the match function for the bias.  L2-normalization was shown to be more useful than L1-

normalization.  In this lecture, we examine "pivoted document length normalization" from [SBM '96].  
The paper is an interesting example of empirical research conducted by graduate students at Cornell, 
because researchers confronted the question of whether L2-normalization was the best engineering 

solution for achieving the user's information retrieval goal.  Using empirical research methods, the 
researchers investigate and conclude that "better retrieval effectiveness results when a normalization 
strategy retrieves documents with chances similar to their probability of relevance."  [SBM '96]

L2-Normalization Review

We (and [SBM '96]) notice that the choice of normalization function is partially based on theory, but 
mostly attuned to achieving high performance in our information retrieval goal of highly ranking the 
most relevant documents to match the query.  In this sense, prior to [SBM '96] the assumption was 
that L2-normalization was performing well.  [SBM '96] investigates how well L2-normalization performed 

in practice on the TREC corpora, and it proposes a new normalization function, "pivoted document 
normalization", which the authors demonstrate is better at achieving the enumerated user information 
need as specified for a subset of the TREC corpora.

Recall that our normalization function, norm(d), can be considered the length penalty which addresses 
the two problems of bias caused by long documents.  In L2-Normalization, norm(d) is set as follows:

 
Our norm(d) is applied to terms in the match function but it is (A) term independent and (B) document 
dependent.  Our norm(d) function corresponds to cosine scoring and cosine scoring seems reasonable, 
and not obviously refutable.  At the time of [SBM '96], L2 was a common normalization function in the 

information retrieval literature.

Empirically Validating the Performance of the L2-Normalization Function

The first task in [SBM '96] is to empirically check whether the performance of the norm function (within 
the context of the term-weighting function and match function) is 'well fit'.  More concretely:

How does the length distribution of (truly) relevant documents compare to the length 
distribution of retrieved documents, with respect to L2-normalization? 

The plots below in Figure 1 from [SBM '96] seek to highlight the comparison.  First, 741,856 documents 
from the TREC corpora were ranked in order of file byte size and then divided into 742 bins of 1,000 
documents (the final bin with the largest file sizes had 856 documents).  For the plots in Figure 1, the 
median document length of each bin was used to generate a point for the bin.  Next, 9805 'relevant' 
query-document pairs  (q,d) were generated by finding where the document d was judged relevant to a 
query q for 50 TREC queries matched across the 741,856 documents. 

Since the objective of normalization is to compensate for ranking bias caused by document length, 



Figure 1 helps us clarify the relationship between relevance and document length in real-world corpora.  
Graph (a) shows that the probability increases with file size that a relevant document will be in a bin 
with a larger file size.  Long documents do have higher relevance compared with short documents, 
which can be explained by the fact that long documents usually cover more topics and have broader 
content.  Graph (b) shows that the probability that a relevant document is retrieved using L2-

normalization follows a similar pattern to Graph (a), but the probability of retrieval for larger documents 
does not increase as rapidly as the probability of relevance expressed in graph (a).  Graph (c) shows 
the implications of graphs (a) and (b).  The penalty imposed by L2-normalization on relevant documents 

with document length larger than a pivot point (p) is actually greater than desired.  Documents shorter 
than pivot point (p) have a greater probability of retrieval than is warranted for their probability of 
relevance. 

 

It is interesting to note that the x-axis in the plots of Figure 1 are measured in bytes because they are a 
more neutral measure than words.  Using bytes also saves the time required to open the documents 
and count the words or lines.  The y-axis for graphs (a) and (b) show the probability that a given 
document is in a bin with median length x, given that d is an element of (q,d).   Conceptually similar, 
the y-axis for graph (c) is the Average Probability of Relevance/Retrieval.

It is also worth mentioning that the researchers showed a good approach to shrink the x-axis and 
increase the smoothness of plot.  Had they just plotted 9805 relevant documents out of 740,000, the 
graph would have been too sparse to form interesting curves. It is very likely that we would find very 
few or no documents for a lot of values of length, and such a plot wouldn't be as meaningful.  So, [SBM 
'96] took the idea of "histogram" and grouped documents into length groups to increase the 
meaningfulness of each point on the plot.  Each of these length groups, or "metabins", represents the 
average of every 24 consecutive bins.

Adopting the metabin approach is very important from a methodological perspective. On the one hand, 
compressing bins into metabins creates a smoother plot; on the other hand, it provides the researchers 
with data for both coarse-grained (metabinned) and fine-grained partitioning (binned) of document 
lengths. A fine-grained partitioning by itself would probably be too noisy to show any significant 
patterns, while a coarse-grained partitioning by itself would show too little noise, and raise suspicions 
about SBM's data analysis process in other researchers.



Simplification of the Empirical Observations

From Figure 1, we can see that the curve which approximates the probability of relevant/retrieved 
documents (using L2-normalization) crosses the curve representing the probability of relevant 

documents.  We call the crossing point of the two curves the pivot point.  In addition, we observe the 
trends that retrieval using  L2-normalization over-prefers short documents and under-prefers long 

documents.  But at some pivot point, p, it does match the distribution of retrieved documents.

For simplicity, we can model the behavior observed in [SBM '96]'s graph (c) of Figure 1 by reducing it 
to a smoother form as follows:

 

Improving Performance over the L2-Normalization Function -- Pivoted 

Document Normalization

The empirical observations we discussed earlier imply that we could improve our match function's 
performance in achieving the user's information need if we had a "norm'(d)" (as a function of norm(d)) 
such that:

• if norm(d) == p, norm'(d) = norm(d) 
• if norm(d) > p, norm'(d) < norm(d)
• if norm(d) < p, norm'(d) > norm(d) 
• for all values of d, norm(d) is reasonably close to norm(d) 

The last criterion is suggested by the fact that, even though our match function produces a relevant 
document length distribution that is different than the actual relevant document length distribution in 
TREC, the values of the two distributions are in the same order of magnitude (average p of relevance / 
retrieval ~ 1x10-2)

However, in practice, there are challenges to developing norm'(d):

• Our specification for norm'(d) is not constrained enough. 
• Little information is available to assist us.  Our information retrieval function will not know the 

crossing point p or the relevance distribution. 



To solve these problems, we want a "simple" norm'(d) (for instance, a linear function of d) with as few 
parameters as possible.

Considering some alternatives for basic functions of norm'(d):

1. We could choose norm'(d) = Constant, but this doesn't make sense because it doesn't 
compensate for the unfairness of document length. 

2. We could try a linear function of norm(d):

 

 
The linear function looks like it might work to approximate our desiderata, but we would like to 
eliminate as many of the unknown parameters (m' and b') as possible.

Parameter Reduction

1. Apply known information: 

• if there is a value dp such that norm(dp) == p, we want norm'(dp) = p 

 
    2. Use a test value of p:



 

Why should p be set as norm-bar? [SBM '96] shows us that concrete value of p actually doesn't matter 
as much as we might think, because setting p to norm-bar is no more than a re-parametrization, and 
does not alter the ranking produced. We present the proof of this claim below, reproduced from SBM's 
paper:

Proof:

1. group unknowns: 

 

 
    The rank equality holds because p(1-m') is a document- and term-independent quantity. 

    2. pick some m'' such that p(1-m') == norm-bar(1-m''). Then, (11) is equal to:

 
    because m'' / (1 - m'') is a bijection onto (0, inf). 

    3. get as interpolation:

 

 
    Note that if norm(d) == norm-bar, norm''(d) = 1.  Now we see why norm is a good choice for p.
Rank equivalence shows that setting p to norm-bar is no more than a re-parametrization, QED

Conclusion

In vector-space-model information retrieval, the choice of normalization method matters.  Choosing L1-
normalization results in a bias towards documents containing few different types of terms (few non-zero 
term frequencies).  L2-normalization is more justifiable, correcting the match function for the bias of 

long documents.  But "pivoted document length normalization" from [SBM '96] provides us with an 
empirical method to adjust for the bias of long documents without over-compensating.  This method 
provides better retrieval effectiveness by using a normalization strategy which retrieves documents with 
chances similar to their probability of relevance.



References

See Pivoted Document Length Normalization. Amit Singhal, Chris Buckley, Mandar Mitra. ACM SIGIR'96, 21-29, 
1996.   Referenced as [SBM '96] in this document.

Footnotes

1  We are using a non-standard notation because of the following irritating problem: if one used the 
standard notation, dj might be either the jth coordinate of the vector d or the jth document of the set of 

documents, D.  So, to distinguish between the two, d[j] (scalar) is the jth coordinate of the vector d and 
dj is the jth document of the set of documents, D.

Lecture Vocabulary Terms

The following terms are useful for understanding the material:

• d: a document, an element of the set of D documents 
• C: a corpus, a synonym for the set of D documents
• Vocabulary: the set of m terms used to represent documents in C 
• v: a term in the Vocabulary; an element of V 
• j: an index variable within a vector (esp. for vectors in Rm)
• term: an element of the set of Vocabulary; typically a word, phrase, or other unit of observation 

about a text
• q: a query expressing a user's information needs
• tf: term frequency (term occurrence in document)
• idf: inverse document frequency of a term
• norm(): a normalization function 

In our notation, d and q are represented as vectors with index variable j.

http://singhal.info/pivoted-dln.pdf


INFO 630/CS 674 Lecture Notes: Finger Exercise 
 

Scribes: Vladimir Barash, Stephen Purpura, Shaomei Wu 
 
 

Here is a quick finger exercise to let you practice the L1, L2 and pivoted document length 
normalization schemes we presented in class.   

 
Given a corpus with m terms, assuming each )(),( jidfjtfd  is non-negative, here d is a 
document from the corpus. 
 
The L1-normalization function is: 
 

norm1(d) = tfd ( j) × idf ( j)
j=1

m

∑  

 
The L2-normalization function is: 
 

norm2(d) = [tfd ( j) × idf ( j)]2

j=1

m

∑  

 
The pivoted document length normalization for L2 normalization from [SBM ‘96] is:  
 

norm' (d) = m' × norm2(d) + b' = m' × norm2(d) + p(1− m' ) 
 

In the following three part problem, we pick pivot point p to be the average value of 
norm2(d)  over all the documents in our given corpus, and as recommended by [SBM 
‘96]1, we let m' = 0.2. 

 
Problem Part 1: 
Given a corpus containing 4 documents, with the term frequencies over the corpus 
vocabulary as below: 
 

Table 1: Corpus term-frequency table 

 cat dog household love useful 
d1 2 2 0 1 0 
d2 2 2 0 0 0 
d3 0 4 4 1 3 
d4 8 6 2 6 4 

                                                 
1 Setting m=0.2 is recommended in [SBM ‘96] for pivoted unique normalization.  See [SBM ‘96] for a 
more complete discussion. 



 
Given the query “love cat” using a binary query vector (i.e. q = [1,0,0,1,0]T over the 
vocabulary), calculate norm1, norm2 and norm'  for each document. 
 
Part 1 Solution: 
The  “tf” term representing the term-frequency in each document is already given in 
Table 1.  For the purposes of this exercise, we will use the following ‘idf’ function (note 
this is different from the idf function that we have used in other places in the notes): 
 

idfd ( j) = ln N
n j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , 

 
where N is the size of the corpus (the total number of documents in the corpus) and nj is 
the number of documents that contain term j.  
 

Table 2: idf table 

 cat dog household love useful 
idf 0.2877 0 0.6931 0.2877 0.6931 

 
 
Hence, we get the raw tf × idf values as: 

 

Table 3: Raw tf × idf  table – note: these values are referred to as rtd#(j) 

 cat dog household love useful 
d1 0.5754 0 0 0.2877 0 
d2 0.5754 0 0 0 0 
d3 0 0 2.7724 0.2877 2.0793 
d4 2.3016 0 1.3862 1.7262 2.7724 

 
 
Applying the functions given in problem, we can calculate that: 

 
L1-normalization terms for each document: 

norm1(d1) = rt1( j) =
j=1

5

∑ 0.8631; 

 

norm1(d2) = rt2( j) =
j=1

5

∑ 0.5754; 

 



norm1(d3) = rt3( j) =
j=1

5

∑ 5.1394; 

 

norm1(d4 ) = rt4 ( j) =
j=1

5

∑ 8.1864. 

 
L2-normalization terms for each document: 
 

norm2(d1) = [rt1( j)]2

j=1

5

∑ = 0.6433; 

 

norm2(d2) = [rt2( j)]2

j=1

5

∑ = 0.5754 ; 

 

norm2(d3) = [rt3( j)]2

j=1

5

∑ = 3.4774 ; 

 

norm2(d4 ) = [rt4 ( j)]2

j=1

5

∑ = 4.2291. 

 
Pivot document length normalization terms for each document: 
 
 p = (norm2(d1)+norm2(d2)+norm2(d3)+norm2(d4))/4 =2.2313 , 
 

norm' (d1) = m' × norm2(d1) + (1− m' )p = 0.2 × 0.6433+ 0.8 × 2.2313 =1.9137; 
 

norm' (d2) = m' × norm2(d2) + (1− m' )p = 0.2 × 0.5754 + 0.8 × 2.2313 =1.9001; 
 

4805.22313.28.04774.32.0)1()()(  
32

 
3

 =×+×=−+×= pmdnormmdnorm ; 
 

6309.22313.28.02291.42.0)1()()(  
42

 
4

 =×+×=−+×= pmdnormmdnorm  
 



Problem Part 2: 
Further compute these three documents’ ranking according to the query given before, 
under L2-normalization and pivot document length normalization, and compare the ranks. 
 
Part 2 Solution: 
Compute relevance by term-weight measure for each document: 
 

∑
≠

×
×=

0
)

)(
][][][()(

j

d

dnorm
jidfjtfjqdscore , 

 
but, given q as a binary query vector, the function can be simplified as:  

)(

])[][(
)( 0][,

dnorm

jidfjtf
dscore jqj

d∑
≠

×
= . 

 
Under L2-normalization: 
 

score(d1) =
0.2877 + 0.5754

0.6433
=1.3417; 

 

score(d2) =
0 + 0.5754

0.5754
=1; 

 

score(d3) =
0.2877 + 0

3.4774
= 0.0827; 

 

score(d4) =
2.3016 +1.7262

4.2291
= 0.9524. 

 
So the ranking under L2-normalization is: 

 
d1 > d2 > d4 > d3 

 
Under pivoted document length normalization: 

 

score(d1) =
0.2877 + 0.5754

1.9137
= 0.4510; 

 

score(d2) =
0 + 0.5754

1.9001
= 0.3028; 

 

score(d3) =
0.2877 + 0

2.4805
= 0.1160; 

 



score(d4) =
2.3016 +1.7262

2.6309
=1.5310. 

 
So the ranking is adjusted by pivot document length normalization as: 

 
d4 > d1 > d2 > d3 

 
We can see ranks for most relevant retrieved documents change among d1, d2 and d4. 
Simple observation of table 1 can tell us that d4 is very likely to be more relevant to the 
given query comparing to d1 and d2, since the query terms appear in d4 very frequently. If 
you examine the values of normalization terms calculated above, you can see that the L2-
normalization terms fall into a larger range than pivoted document normalization. The 
long document, d4 has a value almost 9-times larger than short document d1. This verifies 
the claim made in [SBM’96] that L2-normalization penalizes long documents too much, 
which harms the performance.  

 
 
Problem Part 3: 
As we demonstrated in the lecture, if we pick the pivot point p at another place, m’ can be 
adjusted accordingly to maintain the ranking.  To test this idea, let’s set p as the median 
L2-normalization term from all the documents in the given corpus.  What would be a 
reasonable range of m’ such that the ranking under pivoted document length 
normalization (of the L2-normalization) for query “love cat” is still maintained?  
 
Part 3 Solution: 
The median normalization term given by L2 is (norm2(d1)+ norm2(d3))/2  =  
 (0.6433+3.4774)/2 = 2.0604.  So we set p = 2.0604. 
 
We wish to find m such that m' ∈ (0,1) and score(d1) ≤ score(d4 ): 
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Solving, m' ∈ (0,0.8603) .   
Substituting m = 0.86: 

0261.1
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3016.2
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INFO 630/CS 674 Lecture Notes: Deeper Thought 
 

Scribes: Vladimir Barash, Stephen Purpura, Shaomei Wu 
 

Our finger exercise demonstrated that the choice of normalization function impacted document 
ranking based on document length.  But there is a fundamental difference between our finger 
exercise and the TREC data sets – limited vocabulary.  Our finger exercise example and the 
TREC corpora are not degraded with misspellings or nonsense terms such as terms which might 
appear from a partially successful OCR (optical character recognition) process.  In such a 
process, the term ‘cat’ may appear as ‘cats’, ‘cal’, or ‘eat’.   
 
Question:  
Why might vocabulary diversity have an impact on the normalization function?  Such 
vocabulary diversity might be caused by a significant presence of nonsense terms 
(misspellings, etc.). 
 
Answer: We’ve already noted in the lecture that more non-zero term frequencies cause the 
retrieval process to be biased towards long documents.  But we didn’t examine the impact of 
extremes in vocabulary diversity on the effectiveness of the normalization function. 
 
The finger exercise used 5 terms, while the TREC data is supposed to have a more 
“representative” vocabulary.  Even the TREC corpora are a special case of real-world data 
because they are supposed to be error-free.  Real-world vocabulary introduces two common 
problems for NLP researchers: synonymy and polysemy. 
 
Unlike our finger example, real world corpora contain synonyms – like kitty and cat.  Given a 
query which includes “cat”, use of the term “kitty” in the document instead of “cat” reduces the 
term frequency of “cat” and can cause the information retrieval process to rank documents which 
contain the word “kitty” lower than other documents which might not even contain the word 
“cat” even though an expert reviewer would consider “kitty” as a synonym for “cat” and on-
topic.   
 
In addition, terms have a range of meanings based on the context.  In American political 
documents, the word “choice” sometimes refers to the discussion of reproductive rights and other 
times it refers to an election.  So, the query “choice abortion” might rank documents about 
elections higher than documents about reproductive rights if “choice” is not disambiguated. 
 
In addition to vocabulary diversity caused by synonyms and polysemes, [SBM ‘96] mentions 
another reason that vocabulary diversity may exist – corpora may be degraded with nonsense 
terms and misspellings such as terms which might appear from a partially successful OCR 
(optical character recognition) process. 
 
Now we’ll examine an information retrieval example which is affected by these types of 
vocabulary diversity. 
 



For the purposes of this exercise, we will use the following ‘idf’ function (note this is different 
from the idf function used in the finger exercise but the same as the idf function used in the 
notes): 
 

,)( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

j
d n

Njidf  

 
where N is the size of the corpus (the total number of documents in the corpus) and nj is the 
number of documents that contain term j.  
 
Compute relevance by term-weight measure for each document: 
 

∑
≠

×
×=

0
)

)(
][][][()(

j

d

dnorm
jidfjtfjqdscore , 

 
but, given q as a binary query vector, the function can be simplified as:  

)(

])[][(
)( 0][,

dnorm

jidfjtf
dscore jqj

d∑
≠

×
= . 

 
 
Increasing the number of term synonyms in the vocabulary varies tfd[j] by increasing the 
probability that tfd[j] will decrease in value.  Similarly, when polysemes are present, they will 
artificially increase tfd[j].  When the tfd[j] terms increase or decrease in value relative to the real 
match against the user’s information goal, the normalization function can play havoc on the 
retrieval probabilities. 
 
Consider the following example documents in a 5 document corpus: 



 
Documents: 
 
Doc#1: 
Cats are cool, soft, fuzzy and bouncy! 
 
Doc#2: 
Dogs love to eat and run around. 
 
Doc#3: 
It was raining cats and dogs the other night... so bad that I couldn't go outside. Sometimes I 
would come to the window and just stare at the rain. It was very depressing, but in the morning, I 
felt better! 
 
Doc#4: 
It's a dog-eat-dog world out there. From puppies to big hounds, everyone struggles to survive, to 
avoid his superior and to beat up on his inferior. That's just how it is. 
 
Doc#5: 
Cats and dogs are two common types of household animals. There are many species of cats and 
dogs - from the common house cat, to the Blue Russian, from bulldog to shepherd. Both cats and 
dogs have been domesticated by man many thousands of years ago and are loved and cared for 
by many pet owners today. There are even urban legends of cat owners having statistically better 
health than non-cat owners - and everyone knows how useful a dog can be, for protecting the 
house, for instance! There are many more things to say about cats and dogs, but I think I've run 
out of time, so I have to go. Thank you for listening! 

 
 
If you run an experiment where you find document weights for both the full text vocabulary and 
for the Porter stemmed vocabulary (with stop word removal) versions, you will find very 
different match weightings. (For more information on Porter stemming, see 
http://tartarus.org/~martin/PorterStemmer/) 
 
IMPORTANT NOTE: “non-cat” and “dog-eat-dog” are treated as single words by the Porter 
stemmer and distinct, separate words by the term frequency counting algorithm that we used to 
calculate word frequencies.  See the References section for links to the complete output of the 
tools. 



Now examine the results of the query: {“cat”, “love”} 
 
Full vocabulary 
Document #  raw tfidf squared for ‘cat’  raw tfidf squared for ‘love’ 

1   0     0 
2   0     25.00 
3   0     0 
4   0     0 
5   225.00     0 

 
Porter stemmed vocabulary 
Document #  raw tfidf squared for ‘cat’  raw tfidf squared for ‘love’ 

1   2.78     0 
2   0     6.25 
3   2.78     0 
4   0     0 
5   100.00     6.25 

 
Full vocabulary 
Document #   L2-Norm   Pivoted TFIDF Norm 

1   10.4894    23.7915 
2   8.2365     23.3409 
3   28.3702    27.3677 
4   25.6369    26.8210 
5   62.8521    34.2640 

 
Porter stemmed vocabulary  
Document #   L2-Norm   Pivoted TFIDF Norm 

1   10.1379    17.4178 
2   6.3465     16.6595 
3   19.1848    19.2272 
4   17.5000    18.8902 
5   43.0200    23.9942 

 



Full vocabulary 
Document #  L2-Normed Score  Pivoted TFIDF Normed Score 

1   0     0    
2   0.6071     0.2142 
3   0     0 
4   0     0 
5   0.2387     0.4378 

 Rank:   d2 > d5 > d1, d3, d4   d5 > d2 > d1, d3, d4 
 
Porter stemmed vocabulary 
Document #  L2-Normed Score  Pivoted TFIDF Normed Score 

1   0.1644     0.0957 
2   0.3939     0.1501 
3   0.0869     0.0867 
4   0     0 
5   0.2906     0.5210 

 Rank:   d2 > d5 > d1 > d3 > d4   d5 > d2 > d1 > d3 > d4 
 
 
For either L2-Normalization weightings or Pivoted TFIDF weightings, the Porter Stemmed 
result produces a better document ranking than the full vocabulary versions.   But in this case, 
the Pivoted TFIDF scores always outperform the L2-Normalized scores for both the full 
vocabulary and the Porter stemmed vocabulary.  In the documents, there are no synonyms for 
‘cat’ or ‘love’, although ‘pets’ could be considered a synonym for ‘cat’ and “non-cat” causes 
some noise. 
 



Now consider the query: {“dog”, “love”} 
 
Full vocabulary 
Document #  raw tfidf squared for ‘dog’  raw tfidf squared for ‘love’ 

1   0     0 
2   0     25.00 
3   0     0 
4   25.00     0 
5   6.25     0 
 

Porter stemmed vocabulary 
Document #  raw tfidf squared for ‘dog’  raw tfidf squared for ‘love’ 

1   0     0 
2   2.78     6.25 
3   2.78     0 
4   0     0 
5   69.44     6.25 

 
Full vocabulary  
Document #  L2-Normed Score   Pivoted TFIDF Score 

1   0     0 
2   0.6071     0.2142 
3   0     0 
4   0.1950     0.1864 
5   0.0398     0.0730 

 Rank:   d2 > d4 > d5 > d1, d3   d2 > d4 > d5 > d1, d3 
 
Porter stemmed vocabulary  
Document #  L2-Normed Score   Pivoted TFIDF Score 

1   0     0 
2   0.6565     0.2501 
3   0.0869     0.0867 
4   0     0 
5   0.2518     0.4515 

 Rank:   d2 > d5 > d3 > d1, d4   d5 > d2 > d3 > d1, d4 
 
Like the “cat love” query, for the “dog love” query, Pivoted TFIDF scores outperform L2-
Normalized scores on the Porter stemmed vocabulary.  Within the Porter stemmed vocabulary, 
L2-Normalized scores prefer short documents and Pivoted TFIDF scores prefer long documents.  
But the Pivoted TFIDF scores fail to outperform L2-Normalized scores on the full vocabulary.  
Most of the reason for this is the presence/absence of the query terms in the document.  In d4, 
‘dog’ has a polyseme – ‘dog-eat-dog’ which is filtered as a different term by the Porter stemming 
algorithm.  However, in the full vocabulary, two occurences of ‘dog’ in ‘dog-eat-dog’ cause d4 to 
erroneously be ranked as highly relevant and affect the normalization score. 
 



How much is the normalization score affected?  You can think of the normalization factor as an 
amplifier of the ‘tf idf’ terms.  Documents are being rewarded or punished due to the type of 
normalization.  The following table shows how much more the Pivoted TFIDF Normed scores 
are being punished under the full vocabulary, compared to the Porter stemmed vocabulary.  
When the numbers in the table are larger, the L2-Norm is comparatively greater than the Pivoted 
TFIDF Norm. 
 
Ratio of L2-Norm/Pivoted TFIDF Norm 
Document #   Full vocabulary  Porter stemmed vocabulary 

1   0.4409     0.5820   
2   0.3529     0.3810 
3   1.0366     0.9978 
4   0.9559     0.9264 
5   1.8343     1.7930 

 
 
Combining the effects of the vocabulary diversity (flatter or inflated ‘tf’s and different norm 
scores), it is easy to see how retrieval probabilities can change based on the vocabulary diversity. 
 
References: 
 
See http://docs.google.com/Doc?id=dcpkz9gb_42wmz5b5 for the full texts, processing 
instructions, and raw statistics about the text. 
 
For a spreadsheet of the full vocabulary document matrix and statistics, see: 
http://spreadsheets.google.com/pub?key=pswp60NXd6HBLztSVi-eGcw 
 
For a spreadsheet of the Porter stemmed vocabulary document matrix and statistics, see:  
 http://spreadsheets.google.com/pub?key=pswp60NXd6HAkLlHrLiEtEg 
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