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1 Background

In the previous lecture, we discussed the Singular Value Decomposition (SVD)
of the term-document matrix D ∈ <m× n where n is the number of docu-
ments in the corpus and m is the number of terms in the vocabulary. With
the help of SVD (which is unique up to sign if the singular values are dis-
tinct), we can decompose an m×n term-document matrix into three special
smaller matrices. The result is frequently abbreviated D = UΣV T where:

U =

m× r︷ ︸︸ ︷
↑ ↑ ↑
| | |
~u1 . . . ~ur

↓ ↓ ↓


︸ ︷︷ ︸

left singular vectors

,Σ =

r × r︷ ︸︸ ︷ σ1 0 0

0
. . . 0

0 0 σr


︸ ︷︷ ︸

singular values

, V T =

r × n︷ ︸︸ ︷
← ~v1 →
← . . . →
← . . . →
← ~vr →


 right singular vectors,

r is the rank of D; the columns of U and V each form an orthonormal basis
for their span; and the singular values are ordered such that σ1 ≥ σ2 ≥ ... ≥
σr > 0.

For the n-dimensional hypersphere of linear combination coefficients A2 =
{~α ∈ <n | ‖~α‖2 = 1}, the hyperellipse DA2 which has semiaxes given by the
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σi
−→ui s succinctly approximates the convex hull of the document vectors (~dis)

and their negatives. DA2 represents a summary of the overall shape of the
corpus and it is sensitive to the document distribution.

The advantages of SVD include (1) reduced storage space and (2) re-
duced computational complexity when performing calculations on the three
component matrices as opposed to on D.

Assuming σ1 6= σ2, of special interest is the first singular vector, ~u1, where

~u1 = argmax
{~u:‖~u‖2=1}

n∑
i=1

(‖~di‖2cos(∠(~di, ~u)))2

That is, ~u1 represents a direction of best fit for the corpus, determined in
part by considering common directions among the ~di document vectors and
in part by emphasizing the longest ~dis.

Assuming all the singular values are distinct, each subsequent ~ui repre-
sents the “next best” fit to the corpus, in the sense of the equation above, if we
first subtract from each ~di its orthogonal projection onto span({ ~u1,...,~ui−1}).

2 Improving the Representation

The representation of a document corpus via SVD is already a vast improve-
ment over its representation via an m× n term-document matrix. But what
if we could transform this representation into an even more compact (albeit
lossy) one? Consider a fixed k < rank(D) and the corresponding rank-k
matrix

D̂ = ÛΣ̂V̂ T

where:

Û =

m× k︷ ︸︸ ︷
↑ ↑ ↑
| | |
~u1 . . . ~uk

↓ ↓ ↓

, Σ̂ =

k × k︷ ︸︸ ︷ σ1 0 0

0
. . . 0

0 0 σk

, V̂ T =

k × n︷ ︸︸ ︷
← ~v1 →
← . . . →
← . . . →
← ~vk →

 .
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By the Eckart-Young theorem, this D̂ is the best approximation with
regard to the matrix 2-norm and the Frobenius-norm to D among all matrices
of rank k.

3 LSI

LSI (Latent Semantic Indexing)[Deerwester et al.1990] is based on the prin-
ciple of applying the Eckart-Young theorem to a term-document matrix (i.e.,
creating an “Eckart-Young projection” of a term-document matrix) to repre-
sent a corpus. Similarly, LSA (Latent Semantic Analysis) refers to applica-
tions of the Eckart-Young theorem to data matrices in situations other than
information retrieval.

The underlying assumption of LSI is that small singular values (and the
associated ~uis) represent noise in the corpus, so that the original individual

document vectors (~dis) are located in too many dimensions. This is certainly
plausible, as individual terms exhibit correlations, and it is quite likely that
not all terms in any given document are necessary to provide an accurate
(from the point of view of IR) representation thereof. Finally, proponents of
LSI claim the existence of potentially better geometric relationships between
the D̂i vectors than between the Di document vectors.

To re-state, the goal is to have a better representation of elements and
their relationships to one another. Since the terms exhibit correlations, there
may exist better document vectors in a k dimensional space, k � r. The
directions of the hyperellipse DA2 (~uis assuming distinct singular values)
that have small lengths (small singular values) might correspond to noise
(noisy features). If the small singular values represent noise, D̂ gives new
(and hopefully better) geometric relationships among the document vectors.

3.1 LSI and Computational Complexity

It is very important to note that LSI does not require storage of, or operations
upon, the full D̂ matrix. Consider a common measure of similarity between
two document vectors, d̂i · d̂j. Let us first rewrite D̂:
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D̂ =

m× k︷ ︸︸ ︷
↑ ↑ ↑
| | |
~u1 . . . ~uk

↓ ↓ ↓


k × n︷ ︸︸ ︷
↑ ↑ ↑
| | |
~β1 . . . ~βn

↓ ↓ ↓


where B = Σ̂V̂ T . Then ~βi is a vector corresponding to the coordinates of d̂i

in the basis ~u1, ..., ~uk. Then:

d̂i · d̂j = ~βi · ~βj

so the actual computation of D̂ is unnecessary.
In a similar vein, computing similarity measures (for example, cosine

similarity) between some query and documents in the corpus is a relatively
simple matter: consider the query vector ~q. The cosine similarity between q
and some di in D as measured between their vector representations in <m is:

cos(~di, ~q) =
~di · ~q

‖~di‖2 × ‖~q‖2
where ‖~q‖2 is document independent and would not actually be computed.

Now, what about computing cosine similarity in the new k-dimensional

subspace SU , namely, the subspace with orthonormal basisBU
def
= { ~u1, . . . , ~uk}?

The k coordinates of the orthogonal projection of ~q onto SU with respect to
BU are given by the vector ~̂q = (~q · ~u1, ...~q · ~uk)T . So, we can assign a score

between the projections of ~q and ~di onto SU as follows, by analogy with the
equation above:

~βi · ~̂q
||~βi||2

(note that one can pre-compute the L2 norms of the n projected document
vectors).

3.2 Observations About LSI

In general, LSI is a technique for (hopefully/partially) capturing term co-
occurrence patterns within a corpus. These co-occurrences can correspond
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to conceptual similarity, e.g. between the terms “stochastic” and “probabilis-
tic”, or to collocations, e.g. the terms “humpty” and “dumpty”. It is not
clear whether either of these co-occurrence types is preferable to the other.

An important feature of LSI is that it makes no assumptions about a
particular generative model behind the data. Whether the distribution of
terms in the corpus is “Gaussian”, Poisson, or some other has no bearing on
the effectiveness of this technique, at least with respect to its mathematical
underpinnings. Thus, it is incorrect to say that use of LSI requires assuming
that the attribute values are normally distributed.

Finally, the “latent semantics” of the singular vectors are not generally
interpretable. There is no reason that ~u1, ..., ~uk should correspond to clearly
identifiable topics or memes in the corpus. First, the ~uis are not unique.
Second, the singular vectors are forced to be orthogonal by construction,
whereas topics (for instance, “physics”, “chemistry”, “math” in a corpus of
high school textbooks) are not necessarily so. Third, dimensionality selection
is always an issue, because there is no clear basis for picking a value of k. In
general, the researcher looks for a gap in the singular values or uses empirical
analysis such as cross-validation to select a value that yields the best results
for his or her IR task. But no general bounds on such a value are known.

Despite these considerations and no guarantees of performance in infor-
mation retrieval, the technique (along with other few-factor representations)
sometimes does significantly improve performance of ad-hoc information re-
trieval and many other applications as well.

4 Few-factor Representations

LSI is one of a host of few-factor representation techniques for looking at cor-
pora. Other techniques in the same category include pLSI, LDA, information-
bottleneck, clustering, etc. Most of these techniques sacrifice computational
simplicity in order to replace the singular vectors with more clearly inter-
pretable alternatives. It is worth mentioning one such technique, known
as the ‘Chinese Restaurant Process’ with an example application given in
[Blei et al.2003]. The Chinese Restaurant Process takes a generative view-
point, representing individual models as tables in a Chinese restaurant. When
a new document is created (“arrives at the restaurant”) it is seated at one
of the existing tables with some probability proportional to the number of
items already “seated” there, or assigned to a new table. The resulting model
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induces a rich-get-richer effect, wherein tables with many documents fill up
even more. Similarly, tables with few documents remain relatively unoccu-
pied.

The point of mentioning the Chinese Restaurant Process is that use of
this model suggests alternate means of pre-specifying the number of ’factors’
(models, in this case).

5 Finger Exercise

5.1 Question 1

Given a corpus C with 3 documents and 4 terms with term-count distribu-
tions as shown below:

cat dog household love
d1 2 2 0 1
d2 2 0 0 0
d3 0 4 4 1

First compute the SVD for the document matrix D of this given corpus.
Can you give some intuitive descriptions of ~uis(left singular vectors),

σis(singular values) and ~vis(right singular vectors)? (In the vector space,
please recall the mapping from hyperpolygon to hyperellipse we did in class.)

Sol:
As given in the problem,

D =


2 2 0
2 0 4
0 0 4
1 0 1



U =


−0.1202 −0.9060 −0.4059
−0.7373 −0.1262 0.5000
−0.6304 0.3727 −0.6450
−0.2110 −0.1563 0.4113


Σ =

 6.0042 0 0
0 2.9837 0
0 0 1.0232


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V T =

 −0.3208 −0.7443 0.5858
−0.0400 −0.6073 −0.7935
−0.9463 0.2780 −0.1650


Let DA2 be the hyperellipse derived from D, thus ~uis represent the di-

rections of DA2’s axes, σis represent the lengths(from origin) of the hyper-
ellipse’s axes(w.r.t the axis represented by ~ui), and ~vis are the pre-images
under D of the σi~uis: D~vi = σi~ui.

5.2 Question 2

Following with previous question, if we take k = 2, i.e., consider the smallest
singular value 1.0232 as noise, the new document matrix will be

D̂ =


2.2433 1.6704 −0.0685
1.7003 0.4060 4.0844
0.3866 −0.5237 3.8911
0.7535 0.3339 1.0694

 .
Obviously storing D̂ won’t save any space comparing to D. As claimed

in the lecture, we only need to store B, which is the matrix corresponding to
the coordinates of D in the basis ~u1, ..., ~uk. However, is that always better?

Sol:
The storage problem for LSI is mentioned in [Langville and Meyer2006]

(Page 5). As we can see, both D̂ and B seem more complicated when
compared to the original D. If we store B in this problem as a matrix
consisting of double-typed numbers, the space needed to store B will be
64×k×n = 384bits. Meanwhile, we can store D as a matrix consisting
of int-typed numbers and hence the space needed for D will be at most
32×m×n = 384bits as well; however, since D is very sparse, we don’t ac-
tually need to store all m×n int-typed numbers, so the space to store D
can be further reduced. In this case, picking k = 2 actually doesn’t help at
saving storage. Actually, if we store B as a double-typed matrix and D as
an int-typed matrix, then k needs to be less than m/2 to have LSI use less
space, when D and B have the same density. When the density difference
of D and B is taken into consideration, k should be further reduced for LSI
to use less storage than regular VSM, which might not be possible without
losing too much information from the original corpus. Hence, even though
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we pointed out in previous notes that “reduced storage space” is one of the
advantages of SVD, it is not the main motivation for this technique. The
main motivation for this technique is to build a better term-document matrix
representation of the corpus.

6 Deeper Thought Exercise

6.1 Question

Consider the relative values of some set of σis, and corresponding ~uis pro-
duced by singular value decomposition of some term-document matrix D.
Are all of these values necessary to represent the corpus? Or are the small
singular values just “noise in the corpus”? If they are noise, can we make
any observations about what values are too small to be considered relevant?

6.2 Answer

To some extent, justifying that the small singular values are just noise re-
quires determining the optimal rank, k, of D̂ for use in LSI. For example,
in [Jessup and Martin2001], the optimum k of three corpora were examined.
[Jessup and Martin2001] used a a collection of articles from TIME magazine
(TIME) from 1963, a collection of Medline (MED) articles on various medi-
cal topics, and the Cystic Fibrosis collection (CF) which consists of a set of
Medline articles containing the phrase Cystic Fibrosis. Figure 1 shows the
minimum and maximum singular values for the three corpora and a graph of
all of the singular values for the MED corpus. Notice that (1) all the singular
values for the corpora are greater than one and (2) despite the strong per-
formance of LSI on the MED corpus, there is no non-trivial phase transition
in the graph of the singular values of the MED corpus.

Rather than examining the singular values themselves, it is more informa-
tive to examine the impact of reducing the dimensionality on the error in the
representation of the term-document matrix. Consider Figure 2 from Ando’s
PhD thesis[Ando2001], which illustrates the shape of the error bounds as the
dimensionality of the approximated term-document matrix increases from 1
to rank(D).

The three error equations in Figure 2 are equations 3.1, 3.2, and 3.3 of
Ando (2001) (see Ando’s PhD thesis for the full definitions and theorems).
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Figure 1: The range of singular values in TIME, MED, and CF corpora from
page 12 of Jessup and Martin (2005)
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The error functions conceptually represent the bounds where the error must
be located as the dimensionality is changed from the original term-document
matrix. Ando’s thesis suggests that non-uniformity in the distribution of
topics among the documents (coupled with the presence of “topic mixing” of
multiple topics in a single document) significantly impacts where the actual
error in the representation lies for a given dimensionality. A very lopsided
distribution with a lot of topic mixing produces the greatest upper bound
on the error for LSI. A perfectly uniform distribution of topics (k) over doc-
uments with little inter-mixing produces the best upper bound on the error
for the LSI representation for IR at around k topics, where k is the number
of actual topics in the corpus.

,

Figure 2: Schematic illustration of LSI error bounds and dimensionality;
Figure 3.3 from Ando PhD thesis (2001) (modified for display)

Now consider Figure 3, which shows that when topics are distributed non-
uniformly among documents, LSI tends to be biased toward representing the
sub-structure of larger topics. [Ando and Lee2001] demonstrates a method
(LSI with Iterative Residual Rescaling) to adjust for the problems caused by
non-uniformity of the topic distribution by producing a representation which
can perform better than LSI and VSM (in the tested models).
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Figure 3: Effect of non-uniformity of topic-document distribution on LSI and
how IRR compensates; Figure 4.2 from from Ando PhD thesis (2001)

Returning to the motivating questions, Figure 2 can help us construct
responses. When the actual distribution of topics in the corpus is more lop-
sided or inter-mingled, it is less likely that decreasing rank-k results in a
better representation of the corpus (i.e. noise reduction). So, considering
the relative size of the singular values can be misleading. However, in prac-
tice, the true topic-document distribution is unknown, so methods like IRR
may be more effective than the original LSI because IRR adjusts for non-
uniformity by changing the construction of the representation to account for
it.
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