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1 Connection to the Previous Lecture

At the end of the previous lecture we were talking about how to incorporate implicit relevance
feedback which came in the form of preferences, i.e. instead of absolute judgments (this
document is relevant and that document is not) we had information from clickthrough data
in the form of relative judgments (this document is more relevant than that document). We
ended up with some sort of vector space model. We considered “items” in a vector space,
the “items” were little odd: query-and-document vectors rather than document vectors. So
we were back to the vector space model, maybe a bit different than the one we were used to,
but given that, this is a good time to go back and talk about the term-document matrix.

Let’s consider more generalized features than just term counts. We will allow more general
attributes and in fact our features can be negative. For example, we can have a feature that
represents the number of words in the document relative to the average document length. We
can also have some features like the number of English terms minus the number of Finnish
terms. We are back to a vector space representation. We are going to refer to the entries in
the document vectors as “terms” for convenience, but we will actually mean more general
attributes or features.

2 The Term-Document Matrix

The entire corpus can be represented as a term-document matrix D. D consists of document
vectors ~di. The document vectors are the columns of this matrix. Document vector ~di

contains m generalized terms

D =

 | | . . . |
~d1

~d2 . . . ~dn

| | . . . |

 , D ∈ Rm×n.

Since the terms might not be of the same type (i.e. one term may be a term count, one
may be some relative quantity) it no longer makes sense to normalize across terms. So, we
assume that the columns of D are not normalized document vectors, because we consider
generalized terms.

Before, we were considering the document vectors individually. We have not addressed
the question of how the documents in the corpus relate to each other, except implicitly with
respect to the query and in our consideration of the IDF (see below). Now let’s ask a different
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question: Suppose we have a term-document matrix D, is there any way to get a succinct
representation of the information within the term-document matrix? Can we understand
the corpus in a compact way from the term-document matrix? What succinct descriptions
of corpus structure can be derived from D?

Why do we care? We have a query and we have to find documents relevant to that query.
How does this help us at all? The idea is to get a better representation of the documents
that corresponds to the structure of the corpus, since a better representation may help us
do better retrieval.

We have seen before some sort of analogy to what we are looking for. Inverse document
frequency (IDF) considers the whole document corpus. IDF looks at the distribution of
the terms in the whole corpus and shrinks term frequencies for terms that occur a lot in the
corpus. IDF thus uses the overall corpus characteristics to alter our document representation.

Let’s ask an “easy” question first. How “spread out” are the documents? (How varied

is the corpus C?) We should think of the ~di’s as vectors and look at some geometric notion
of variation. Therefore to answer the previous question one can consider their span (also
known as the column space of D). If the document vectors are spread out, then they have a
big span. The span of a set of vectors is the set of all possible linear combinations of these
vectors. Hence the span is a space. We can use the dimensionality of the span to summarize
that space. The dimensionality of the span of {~d1, ~d2, . . . , ~dn} is denoted as rank(D) and
represents the number of vectors needed for a basis for the span. If the vectors are really
spread out we will need a lot of basis vectors to describe them and if they are close to each
other we may need only few basis vectors.1 A bigger rank means that the vectors are more
spread out. But we can have different sets of vectors whose column spaces have the same
rank but do not look the same structurally. For example, in Figure 1 we have two different
corpora but our intuition says that the one on the left is more “spread out” than the one on
the right.

Figure 1: Two sets of document vectors. The one on the left is more “spread out” than the
one on the right

We want more information on the corpus structure, because we want to be able to tell
the difference between two sets of vectors with the same rank. Let’s consider an easy case

1It is worthwhile to note that in this setting we can use many tools and theorems from linear algebra.
For example, a non-obvious fact about ranks is that rank(DT )=rank(D), a proof of which appears in the
finger exercises.
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when our corpus has rank one. This means that one basis vector suffices. In other words,
there exists a ~b ∈ Rm − {0} with ||~b||2 = 1 such that for every column ~di of D there exists

an α ∈ R such that ~di = α ·~b.
This means that ~b is some sort of prototypical term profile. Every document is a multiple

of the prototypical term profile. A basis vector is a good representation of our corpus,
because we can describe every document in the corpus using this vector.

How many ~b’s can we find in an one dimensional space, such that ||~b||2 = 1? The answer

is two. In an one dimensional space ~b is unique up to sign. If there was no normalization
constraint then we would have infinite possible choices for a basis vector.

What happens when rank(D)= 2? Here we have a basis consisting of two vectors. There
are a lot of possible choices for the basis vectors. Even if we normalize our basis vectors and
make an additional constraint that they are orthogonal, still our basis will not be unique up
to rotation. In the general case there is no unique basis. So this means we cannot rely on
the rank of D (i.e, the dimensionality of the column space) to give us uniquely specifying
information about the corpus.

3 Some Specific Examples

Now let’s proceed in the following direction. Let’s not consider all possible linear combina-
tions of column vectors (which is what the span is). Let’s restrict our attention to specific
linear combinations of the columns of D. A useful fact regarding these linear combinations
is that

n∑
i=1

α[i] · ~di = D · ~α, where ~α =


α[1]
α[2]

...
α[n]

 ,

a proof of which appears in the finger exercises. Hence we can think of the term-document
matrix D as an operator: Rn → Rm. We can interpret D · ~α as applying an operator D to
the coefficients ~α. Let’s see what happens when we apply the operator D to some specific
coefficients. What are some interesting coefficients? A conceptually easy case is when the
α[i]’s are “fractional assignments”:

a = {α ∈ Rn | α[i] ≥ 0,
n∑

i=1

α[i] = 1}.

To gain some intuition let’s restrict D to be a 2× 3 matrix (two terms and three docu-
ments) which can also be thought as a linear operator D : R3 → R2 (i.e. it acts on vectors
in R3 to produce vectors in R2). What we would like to do is to look at three different such
matrices that represent different types of corpus structure and see if the tools we have from
linear algebra can tell the difference between them. Instead of using the matrix notation it
will prove useful to consider the corpus as three document vectors in R2. Figure 2 shows
three such corpora. Corpus D′ (left) has a lot of variety as we can see from the vectors being
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spread out. In contrast, corpus D′′ (center) exhibits little variation and corpus D′′′ (right)
exhibits variation mostly in one direction (all vectors point roughly to the same direction
but they have different lengths). Now let’s consider these corpora as matrices acting on the
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3

d′′
3

d′′
1 d′′

2

d′′′
1

d′′′
2

d′′′
3

Figure 2: Three corpora. Left: “spread out” corpus D′ , center: corpus D′′ with little
variation, right: corpus D′′′ with directed variation.

simplex a. In our example, this simplex has three vertices which define a triangle. If we
apply the matrices corresponding to the corpora D′, D′′, and D′′′ to a, the images of these
transformations are still triangles because these are linear transformations. The simplex a

is the convex hull of its vertices ~v1 = [1, 0, 0]T , ~v2 = [0, 1, 0]T and ~v3 = [0, 0, 1]T and therefore
its image after some corpus D acts on it will be the convex hull of the images of its vertices.
To see this let

~z = λ1~v1 + λ2~v2 + λ3~v3

be a point on simplex a, where λ1 + λ2 + λ3 = 1 and λi ≥ 0 for j = 1, 2, 3. Then

D~z = λ1D~v1 + λ2D~v2 + λ3
~Dv3

The images of the vertices of the simplex are simply the document vectors themselves:

D~z = λ1
~d1 + λ2

~d2 + λ3
~d3.

Since D~z can be expressed as a convex combination of the document vectors it must be
inside their convex hull. In other words, the simplex a is mapped to the convex hull of the
document vectors. Figure 3 shows how each of our three corpora maps the simplex a onto
R2. By looking at the left and center convex hulls in Figure 3 one might conclude that one
way to measure the variation in these corpora could be the volume of these convex hulls.
However, the convex hull on the right also has small volume even though it’s very different
from the one in the center. So the volume itself is not enough to describe the differences
between these corpora. We need a better way to describe the shape of the corpus.

Let’s try a different set of linear combinations of documents. We define

a1 = {~α ∈ Rn | ||~α||1 = 1}

which is a proper superset of a. In our running example a1 is an octahedron with six vertices
[±1, 0, 0]T , [0,±1, 0]T and [0, 0,±1]T . We expect that when a1 is mapped onto R2 by our
corpora D′, D′′ and D′′′, its image will be a hexagon and each of its vertices will be mapped
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Figure 3: Left: the image of D′a , center: the image of D′′a , right: the image of D′′′a.

to a corner of this hexagon. This means that some of the eight faces of the octahedron will
have to overlap when it is mapped to R2. As before, we expect the image of a1 under D′, D′′

and D′′′, to be a convex hull. This time however we claim that it will be the convex hull
of the document vectors and their negatives. Figure 4 shows these convex hulls for D′, D′′

and D′′′. In this figure we can tell the differences between the three corpora by looking at
the shapes of the hexagons, which are quite distinct. However, we are using six document
vectors (the corners of the hexagon) to describe a corpus with three documents. In general,
in a corpus with n documents, this convex hull will have 2n corners which is undesirable
because we are looking for a succinct representation of the corpus. We would like to remove
the dependence on the number of documents and still be able to describe the shape of the
corpus.
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Figure 4: Left: the image of D′a1 , center: the image of D′′a1 , right: the image of D′′′a1.

We can try a smooth approximation to these convex hulls. The reason we are getting 2n
corners is because the set a1 is a polyhedron with 2n vertices. To avoid this, let’s use the
following set

a2 = {~α ∈ Rn | ||~α||2 = 1}

which is a hypersphere in Rn. Notice that the vertices of a1 still belong in a2 so the corners
of the hexagons in Figure 4 will still be part of the image of a2. A linear transformation
can only stretch and rotate a sphere so the image of a2 will be a hyperellipse. A rough
sketch of the ellipses for our corpora D′, D′′ and D′′′ are shown in Figure 5 along with the
convex hulls that they are approximating. Note that we only need to specify the axes of
the ellipses and their lengths. In our example we only need to specify two lengths and two
axes in two dimensions but in general we will need to specify r lengths and r vectors in Rm
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where r =rank(D). The reason is that by multiplying any vector with the term document
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Figure 5: Rough sketches of D′a2 (left), D′′a2 (center) and D′′′a2 (right)

matrix we can only get vectors that are linear combinations of D’s columns. We already said
that the dimensionality of the span of the columns is the rank of the matrix so r vectors are
enough to form a basis for the span. The axes of the ellipse are orthogonal so they form a
convenient basis. A somewhat simpler basis is an orthonormal one, consisting of orthogonal
unit vectors. Choosing an orthonormal basis allows us to deal with the directions of the axes
and their lengths separately. So we need to specify the lengths which by convention we take
in descending order

σ1 ≥ σ2 ≥ . . . ≥ σr > 0

and a set of corresponding directions:

~u1, ~u2, . . . , ~ur.

In the left ellipse of Figure 5 we have drawn the directions ~u1 and ~u2 of the axes as well as
the axes themselves σ1~u1 and σ2~u2. The values σi are called the singular values and in the
next lecture we will see the connection of all these to the singular value decomposition of
the term-document matrix.

4 Finger Exercises

1. Show that
n∑

i=1

α[i] · ~di = D · ~α

2. In this question we will establish a series of facts in order to show that rank(D)=rank(DT ).
Let’s first recall some linear algebra terms. Let D ∈ Rm×n. The null space of D is
the set of all vectors ~x such that D~x = ~0. The column space of D is the span of its
columns. The row space of D is the span of its rows (equivalently, the column space
of DT ).
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(i) Show that the vectors in the null space of D are orthogonal to vectors in the row
space of D. Which vectors belong to both spaces?

(ii) Show that multiplying the vectors in a basis for the row space by D gives the
same number of linearly independent vectors in the column space. Can the di-
mensionality of the column space be less than that of the row space?

(iii) Apply what you showed in (ii) to DT to show that rank(DT ) = rank(D).

3. In lecture we saw what happened when we apply D to different sets of coefficients.
In this exercise we will see what happens when we apply D to a random vector of
coefficients. Suppose ~x is a random vector in Rn normally distributed with mean ~0
and covariance matrix σ2I. What is the probability distribution of ~y = D~x, what is
its mean and covariance matrix? What is the shape of the set of all points with equal
probability density, say c, for the distribution of ~x? And for the distribution of D~x?
You may make use of the following fact without proof: any symmetric matrix A can be
written as a product QΛQT where Q is a matrix whose columns are the eigenvectors
of A and Λ is a diagonal matrix with the eigenvalues of A on the diagonal.

4. The approach we have taken so far seems to be only applicable to the vector space
model. How can we do corpus structure analysis in the language modeling paradigm?

5 Solutions

1.

D~α =


d1[1] d2[1] . . . dn[1]
d1[2] d2[2] . . . dn[2]

...
...

. . .
...

d1[m] d2[m] . . . dn[m]

 ·


α[1]
α[2]

...
α[n]

 =


α[1]d1[1] + α[2]d2[1] + · · ·+ α[n]dn[1]
α[1]d1[2] + α[2]d2[2] + · · ·+ α[n]dn[2]

...
α[1]d1[m] + α[2]d2[m] + · · ·+ α[n]dn[m]

 = α[1]~d1+α[2]~d2+· · ·+α[n] ~dn =
n∑

i=1

α[i]~di.

.

2. The following proof is by no means the only proof of this fact. Using the SVD of D
and the fact that DT = V ΣUT the desired result can follow easily. However, we think
that the following proof is more intuitive.

(i) If a vector ~x is in the null space of D, then D~x = ~0. The row space of D is the
same as the column space of DT . Therefore if a vector ~y is in the row space of D,
it can be written as a linear combination of the columns of DT . From the first
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finger exercise we know that such a linear combination can be expressed as DT~λ
for some ~λ ∈ Rm. But if ~y = DT~λ for some ~λ ∈ Rm then

~y · ~x = (DT~λ)T · ~x = ~λ · (D~x) = ~λ ·~0 = 0

so ~y and ~x are orthogonal. A vector z that belongs to both spaces has to be
orthogonal to itself. That is ~z · ~z = 0 or

∑n
i=1 z[i]2 = 0. This can only happen

when ~z = ~0.

(ii) This part of the proof is heavily based on [1], which gives a very elegant proof
of what we are showing here. As Mackiw notes, given D ∈ Rm×n, let the vec-
tors ~x1, ~x2, . . . , ~xr ∈ Rn form a basis for the row space of D. Then the vectors
D~x1, D~x2, · · · , D~xr are in the column space of D and further we claim that they
are linearly independent. For, if c1D~x1 + c2D~x2 + · · · + crD~xr = 0 for some
real scalars c1, c2, . . . , cr then D(c1~x1 + c2~x2 + · · · + cr~xr) = 0 and the vector
~v = c1~x1 + c2~x2 + · · · + cr~xr would be in the null space of D. But ~v is also in
the row space of D since it is a linear combination of basis elements. So, ~v is
the zero vector and the linear independence of ~x1, ~x2, ~x3, . . . , ~xr guarantees that
c1 = c2 = · · · = cr = 0. The existence of r linearly independent vectors in the
column space requires that the dimensionality of the column space is at least as
big as r, the dimensionality of the row space.

(iii) Now we can apply the fact that we just showed in (ii) to DT and get that the
dimensionality of its column space is at least as big as the dimensionality of its
row space. But the column space of DT is the row space of D and the row
space of DT is the column space of D. Combining this with what we have from
(ii) we conclude that the dimensionality of the row space of D is equal to the
dimensionality of the column space of D. Equivalently, the dimensionality of the
column space of DT is equal to the dimensionality of the column space of D or
simply rank(DT )=rank(D).

3. In the following we will treat all vectors as n× 1 or m× 1 matrices. A linear transfor-
mation of a normally distributed random variable still results in a normally distributed
random variable. For the mean we have

E[~y] = E[D~x] = D · E[~x] = D ·~0 = ~0.

where the second step is justified by linearity of expectation. Notice that E[~x] is a
n× 1 vector while E[~y] is a m× 1 vector. For the covariance matrix we have

E[(~y−E[~y])(~y−E[~y])T ] = E[(~y−~0)(~y−~0)T ] = E[~y~yT ] = E[(D~x)(D~x)T ] = E[D~x~xT DT ]

and again by linearity of expectation

E[(~y − E[~y])(~y − E[~y])T ] = DE[~x~xT ]DT . (1)
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We know that the covariance matrix of the distribution of ~x is σ2I. That is

E[(~x−~0)(~x−~0)T ] = E[~x~xT ] = σ2I.

Substituting E[~x~xT ] in (1) we get the covariance matrix

E[(~y − E[~y])(~y − E[~y])T ] = σ2DDT .

So the distribution of ~y = D~x is the multivariate normal with mean zero and covariance
matrix σ2DDT :

p(~y) =
1

(2πσ2)m/2|DDT |1/2
e−

1
2σ2 ~yT (DDT )−1~y.

To find the points with equal probability density for the multivariate normal we solve
p(~x) = c for ~x

1

(2πσ2)n/2
e−

1
2σ2 ~xT ~x = c

− 1

2σ2
~xT~x = ln(c(2πσ2)n/2)

~xT~x = 2σ2 ln
1

c(2πσ2)n/2

If we set C1
def
= 2σ2 ln 1

c(2πσ2)n/2 then the above equation can be written as

n∑
i=1

x[i]2 = C1

which we can recognize as the equation of a hypersphere with radius
√

C1. Thus, the
distribution that ~x comes from assigns equal probability density to all the points in the
same hypersphere. Can you guess where will the points with equal probability density
be for the distribution of D~x? Let’s see:

1

(2πσ2)m/2|DDT |1/2
e−

1
2σ2 ~yT (DDT )−1~y = c

− 1

2σ2
~yT (DDT )−1~y = ln(c(2πσ2)m/2|DDT |1/2)

~yT (DDT )−1~y = 2σ2 ln

(
1

c(2πσ2)m/2|DDT |1/2

)
︸ ︷︷ ︸

C2

Let’s set A
def
= (DDT )−1. Then the points with equal probability density satisfy the

equation
~yT A~y = C2. (2)
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The quadratic form on the left hand side can be written as

m∑
i=1

m∑
j=1

aijy[i]y[j] = C2.

You might have expected to find the equation of an ellipse in its canonical form∑m
i=1 λ[i]y[i]2 = C2 for some λ[i] ≥ 0. The above equation doesn’t look like that.

So does that mean that this equation doesn’t describe an ellipse? Well no, because
the ellipse equation in canonical form is describing an unrotated ellipse centered at the
origin. Our ellipse may be rotated, in which case its equation will not be in canoni-
cal form. Can we find a rotation such that in the new coordinate system the above
equation looks like an ellipse? In other words we would like to find a matrix Q whose
columns form an orthonormal basis of Rm such that ~y is the rotated version of some
other vector ~z (~y = Q~z) and ~z satisfies the ellipse equation in canonical form

m∑
i=1

λ[i]z[i]2 = C2

for some λ[i] ≥ 0. We can write this in matrix form

~zT Λ~z = C2

where the matrix Λ is a diagonal matrix with the values λ[i] across the diagonal.
Because the columns of Q are orthonormal we have that QT Q = I or Q−1 = QT . This
means that ~z = QT~y and substituting above gives

~yT QΛQT~y = C2.

By comparing this with equation (2) we conclude that to get the ellipse equation in
canonical form we need to be able to factorize A as

A = QΛQT (3)

with the columns of Q orthonormal and λ[i] ≥ 0. If A is symmetric we know from the
problem statement that such a factorization is possible.

We can easily show that A−1 is symmetric. Let the SVD of D be D = USVT . Then

A−1 = DDT = USVT (USVT )T = USVTVSUT = US2UT

because VTV = I. However (DDT )T = (US2UT )T = US2UT so DDT is symmetric. To
show that A = (DDT )−1 is symmetric we can show that the inverse of any symmetric
matrix M is symmetric. We start from the identity

M−1M = I
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which can be written as
M−1MT = I.

Transposing both sides of the equality gives

(M−1MT )T = I

M(M−1)T = I

and left multiplying by M−1 gives

M−1 = (M−1)T

which is the desired result. We also need to show that the eigenvalues λ[i] of A are
greater than zero. First, A−1 is positive semidefinite because for any vector ~x

~xT A−1~x = ~xT DDT~x = (DT~x)T (DT~x) ≥ 0.

so all its eigenvalues are greater than zero. But if λ[i] is an eigenvalue of A and ~e is
the corresponding eigenvector then A~e = λ[i]~e and by multiplying with A−1 we get

A−1~e =
1

λ[i]
~e

which means that 1
λ[i]

is an eigenvalue of A−1. Hence 1
λ[i]

≥ 0 or simply λ[i] ≥ 0.

Therefore, we have an ellipse whose axes are in the directions of the eigenvectors of
(DDT )−1 and the lengths of the axes are the eigenvalues of (DDT )−1.

4. This is more of a discussion and a partial solution rather than a well worked out answer.
If we are not careful enough we may fall into the trap of thinking that we can easily
apply all the things we have been discussing to the language modeling paradigm by
considering the “parameter-document” matrix. This would be like the term-document
matrix but the columns are now the vectors of multinomial parameters for the language
model induced by each document. However these vectors don’t even form a vector space
(there are many ways to see this, e.g. they don’t include the zero vector, adding two of
them gives something that isn’t a vector of multinomial parameters, etc). Moreover,
the semantics of similarity are different for language models and document vectors.
We have seen that an appropriate similarity measure for language models (probability
distributions) is the K-L divergence. We would like to develop a method that resembles
the SVD in the sense that it can learn a succinct representation of the corpus and can
reconstruct the parameter-document matrix in some optimal way with respect to the
K-L divergence (instead of the Frobenius norm).
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