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Programming Languages

One of the oldest åelds in Computer Science...
• λ-calculus – Church (1936)
• FORTRAN – Backus (1957)
• LISP – McCarthy (1958)
• ALGOL 60 – Backus, Naur, Perlis, & others (1960)
• Pascal – Wirth (1970)
• C – Ritchie (1972)
• Smalltalk – Kay & others (1972)
• ML – Milner and others (1978)
• C++ – Stroustrup (1982)
• Haskell – Hudak, Peyton Jones, Wadler, & others (1989)
• Java – Gosling (1995)
• C# – Microsoft (2001)
• Scala – Odersky (2003)
• F# – Syme (2005)
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Programming Languages

...and one of the most vibrant areas today!

PL intersects with many other areas

Current trends

• Domain-speciåc languages
• Static analysis and types
• Language-based security
• Veriåcation and model checking
• Concurrency

Both theoretically and practically “meaty”

3



Syllabus



Course Goals

• Learn techniques for modeling programs∗

I Formal semantics (operational, axiomatic, denotational)
I Extend to advanced language features
I Develop reasoning principles (induction, co-induction)

• Explore applications of these techniques
I Optimization
I Static analysis
I Veriåcation

• PhD students: cover material for PL qualifying exam
• Have fun :-)

*and whole languages!
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Prerequisites

Programming Experience

• e.g., C, Java, Prolog, OCaml, Haskell, Scheme/Racket
• Comfortable with a functional language
• For undergrads: CS 3110 or 4110 or equivalent

Mathematical Maturity

• e.g., set theory, rigorous proofs, induction
• Much of this class will involve formal reasoning
• Hardest topic: denotational semantics

Interest (having fun is a goal! :-)

If you don’t meet these prerequisites, get in touch.
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Course Work

Participation (5%)
• Lectures, recitations, and ofåce hours
• Email list discussions

Homework (25%)
• 6 assignments, roughly every other week
• Mostly theoretical, some programming
• Must work in groups of 2-3

Preliminary Exam (30%)
• Wednesday, March 30th + take-home problems.

Final Exam (40%)
• Friday, May 13th, 2pm-4:30pm
• Cumulative, with focus on the material from 2nd half
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Academic Integrity

Two simple requests:

1. Most of you are here training to become members of
the research community. Conduct yourself with
integrity.

2. If you aren’t sure what is allowed and what isn’t,
please ask!
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Special Needs and Wellness

• I will provide reasonable accommodations to students
who have a documented disability (e.g., physical,
learning, psychiatric, vision, hearing, or systemic).

• If you are experiencing undue personal or academic
stress at any time during the semester (or if you notice
that a fellow student is), contact me, Engineering
Advising, or Gannett.
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Course Staff

Instructor
Nate Foster
Ofåce: Upson 4137
Hours: Wed 11am-12pm

Teaching Assistant
Jean-Baptiste Jeannin
Ofåce: Upson 4142
Hours: Tue 4:45pm-5:45pm and Thu 7pm-8pm

(ofåce hours start next week)

Web Page
http://www.cs.cornell.edu/Courses/cs6110/2011sp

Mailing List
http://lists.semantics-is-gorges.org/listinfo/cs6110
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Language Speciåcation



Language Speciåcation

Formal Semantics: what do programs mean?

Three Approaches

• Operational
I Models program by its execution on abstract machine
I Useful for implementing compilers and interpreters

• Axiomatic
I Models program by the logical formulas it obeys
I Useful for proving program correctness

• Denotational
I Models program literally as mathematical objects
I Useful for theoretical foundations

Question: few languages have a formal semantics. Why?

13



Language Speciåcation

Formal Semantics: what do programs mean?

Three Approaches

• Operational
I Models program by its execution on abstract machine
I Useful for implementing compilers and interpreters

• Axiomatic
I Models program by the logical formulas it obeys
I Useful for proving program correctness

• Denotational
I Models program literally as mathematical objects
I Useful for theoretical foundations

Question: few languages have a formal semantics. Why?

13



Formal Semantics

Too Hard?

• Modeling a real-world language is hard
• Notation can gets very dense
• Sometimes requires developing new mathematics
• Not yet cost-effective for everyday use

Overly General?

• Explains the behavior of a program on every input
• Most programmers are content knowing the behavior
of their program on this input (or these inputs)

Okay, so who needs semantics?
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A Tricky Example

Question #1: is the following Java program legal?

Question #2: if yes, what does it do?

..
class A { static int a = B.b + 1; }

class B { static int b = A.a + 1; }

15



Who Needs Semantics?

Unambiguous Description

• Anyone who wants to design a new feature
• Basis for most formal arguments
• Standard tool in PL research

Exhaustive Reasoning

• Sometimes have to know behavior on all inputs
• Compilers and interpreters
• Static analysis tools
• Program transformation tools
• Critical software
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Design Desiderata

Question: What makes a good programming language?

One answer: “a good language is one people use”

Wrong! Are COBOL and JavaScript the best languages?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Support for programming in the large (modularity)
• Efåciency (good execution model and tools)
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Design Challenges

Unfortunately these goals almost always conýict

• Types restrict expressiveness in general, but they
provide strong guarantees

• Safety checks eliminate errors but have a cost, either
when compiling or when the program is executed

• Some veriåcation tools are so complicated, one
essentially needs a PhD to use them

A lot of PL research is about ånding ways to gain
without too much pain
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Story: Unexpected Interactions

A real story illustrating the perils of language design

Cast of characters includes famous computer scientists

Timeline:

• 1982: ML is a functional language with type inference,
polymorphism (generics), and monomorphic
references (pointers)

• 1985: Standard ML innovates by adding polymorphic
references → unsoundness

• 1995: The “innovation” åxed

20



ML Type System

Polymorphism: allows code to be used at different types

Examples:

• List.length : ∀α. α list → int
• List.hd : ∀α. α list → α

Type Inference: e τ

• e.g., let id (x) = x ∀α. α → α

• Generalize types not constrainted by the program
• Instantiate types at use id (true) bool

21



ML References

By default, values in ML are immutable.

But can extend the language with imperative features.

Add reference types of the form τ ref

Add expressions of the form

• ref e : τ ref where e : τ (allocate)
• !e : τ where e : τ ref (dereference)
• e1 := e2 : unit where e1 : τ ref and e2 : τ (assign)

Works as you’d expect—i.e., just like pointers in C
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Polymorphism + References

Consider the following program

..

Code Inferred Type

let id(x) = x id : ∀α α → α

let p = ref id p : ∀α (α → α) ref

let inc(n) = n+1 inc : int → int

let () = p := inc OK since p : (int → int) ref

(!p) true OK since p : (bool → bool) ref
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Polymorphism + References

Problem

• Type system is not sound
• Well-typed program →∗ type error!

Proposed Solutions

1. “Weak” type variables
I Can only be instantiated in restricted ways
I But type exposes functional vs. imperative
I Somewhat difåcult to use

2. Value restriction
I Only generalize types of values
I Most ML programs already obey it
I Simple proof of type soundness
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Lessons Learned

• Features often interact in unexpected ways

• The design space is huge

• Good designs are sparse → don’t happen by accident

• Simplicity is rare: n features lead to n2 interactions

• Most PL researchers work with really small languages
(e.g., λ-calculus) to study core issues in isolation

• But must pay attention to whole languages too
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Mathematical Preliminaries



Binary Relations

The product of two sets A and B, written A× B, contains
all ordered pairs (a,b) with a ∈ A and b ∈ B.

A binary relation on A and B is just a subset R ⊆ A× B.

Given a binary relation R ⊆ A× B, the set A is called the
domain of R and B is called the range (or codomain) of R.

Some Important Relations

• empty – ∅
• total – A× B
• identity on A – {(a, a) | a ∈ A}.
• composition R; S – {(a, c) | ∃b. (a,b) ∈ R ∧ (b, c) ∈ S}
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Functions

A (total) function f is a binary relation f ⊆ A× B with the
property that every a ∈ A is related to exactly one b ∈ B.

When f is a function, we usually write f : A → B instead
of f ⊆ A× B.

The domain and range of f are deåned in exactly the
same way as for relations.

The image of f is the set of elements b ∈ B that are
mapped to by at least one a ∈ A:

{f(a) | a ∈ A}
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Some Important Functions

Given two functions f : A → B and g : B → C, the
composition of f and g is deåned by:

(g ◦ f)(x) = g(f(x)) Note order!

A partial function f : A ⇀ B is a total function f : A′ → B
on a set A′ ⊆ A. The notation dom(f) refers to A′.

A function f : A → B is said to be injective (or one-to-one)
if and only if a1 ̸= a2 implies f(a1) ̸= f(a2).

A function f : A → B is said to be surjective (or onto) if
and only if the image of f is B.
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Extensions vs. Intensions

Mathematically, a function f is deåned by its extension:
the set of pairs of inputs and outputs.

A function can also be described by an intensional
representation: a program or procedure that computes
an output given an input.

The same function can have several intensional
representations—e.g., for the identity:

• λa.a
• λa. if true then a else a
• λa. if false then a else a

• λa. π1 (a,a)
• λa. π2 (a,a)
• λa. (λy. y) a
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