
CS 6110 S11 Lecture 27 Products, Sums, and Other Datatypes 11 April 2010

1 Introduction

In this lecture, we add constructs to the typed λ-calculus that allow working with more complicated data
structures, such as pairs, tuples, records, sums and recursive functions. We also provide denotational seman-
tics for these new constructs.

2 Recap—The Typed λ-Calculus λ→

2.1 Syntax

terms e ::= n | true | false | null | x | e1 e2 | λx : τ . e
types τ ::= int | bool | unit | τ1 → τ2

values v ::= n | true | false | null | λx : τ . e closed

Previously, with the untyped λ-calculus, we encoded integers and Booleans as λ-terms. In λ→, we are taking
them as primitive constructs.

2.2 Typing Rules

Γ ⊢ n : int Γ ⊢ true : bool Γ ⊢ false : bool Γ ⊢ null : unit

Γ, x : τ ⊢ x : τ Γ ⊢ e0 : σ → τ Γ ⊢ e1 : σ
Γ ⊢ e0 e1 : τ

Γ, x : σ ⊢ e : τ
Γ ⊢ (λx : σ. e) : σ → τ

3 Simple Data Structures

Each data structure can be added by extending the syntax of expressions (e), types (τ) and values (v). The
evaluation contexts (E) will also need to be extended, and evaluation and type derivation rules added to
work with the new syntax.

3.1 Pairs

Syntax:

e ::= · · · | (e1, e2) | #1 e | #2 e

τ ::= · · · | τ1 ∗ τ2

v ::= · · · | (v1, v2)
E ::= · · · | ([ · ], e) | (v, [ · ]) | #1 [ · ] | #2 [ · ]

For every added syntactic form, we observe that we have expressions that introduce the form, and expressions
that eliminate the form. In the case of pairs, the introduction expression is (e1, e2), and the elimination
expressions are #1 e and #2 e.

1



Evaluation rules:
#1 (v1, v2) → v1 #2 (v1, v2) → v2

Note that these rules define eager evaluation, because we only select from a pair when both elements are
already evaluated to a value.

Typing rules:
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 ∗ τ2

Γ ⊢ e : τ1 ∗ τ2

Γ ⊢ #1 e : τ1

Γ ⊢ e : τ1 ∗ τ2

Γ ⊢ #2 e : τ2

3.2 Tuples

Syntax:

e ::= · · · | (e1, . . . , en) | #n e

τ ::= · · · | τ1 ∗ · · · ∗ τn

v ::= · · · | (v1, . . . , vn)
E ::= · · · | (v1, . . . , vi−1, [ · ], ei+1, . . . , en) | #n [ · ]

Evaluation rules:
#m (v1, . . . , vn) → vm, 1 ≤ m ≤ n

Typing rules:
Γ ⊢ ei : τi, 1 ≤ i ≤ n

Γ ⊢ (e1, . . . , en) : τ1 ∗ · · · ∗ τn

Γ ⊢ e : τ1 ∗ · · · ∗ τn

Γ ⊢ #m e : τm
, 1 ≤ m ≤ n

3.3 Records

Syntax:

e ::= · · · | {x1 = e1, . . . , xn = en} | e.x

τ ::= · · · | {x1 : τ1, . . . , xn : τn}
v ::= · · · | {x1 = v1, . . . , xn = vn}
E ::= · · · | {x1 = v1, . . . , xi−1 = vi−1, xi = [ · ], xi+1 = ei+1, . . . , xn = en) | [ · ].x

Note that the names of the fields xi are included as part of the type.

Evaluation rule:
{x1 = v1, . . . , xn = vn}.xi → vi, 1 ≤ i ≤ n

Typing rules:

Γ ⊢ ei : τi, 1 ≤ i ≤ n

Γ ⊢ {x1 = e1, . . . , xn = en) : {x1 : τ1, . . . , xn : τn}
Γ ⊢ e : {x1 : τ1, . . . , xn : τn}

Γ ⊢ e.xi : τi
, 1 ≤ i ≤ n

3.4 Sums

Sums are useful for representing datatypes that can have multiple forms. For example, a tail of a list can
either be another nonempty list or null.
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Syntax:

e ::= · · · | inLτ1+τ2e | inRτ1+τ2e | case e0 of e1 | e2

τ ::= · · · | τ1 + τ2

v ::= · · · | inLτ1+τ2 v | inRτ1+τ2 v

E ::= · · · | inL [ · ] | inR [ · ] | case [ · ] of e1 | e2

The inL and inR constructs are called left injection and right injection, respectively.

Evaluation rules:

case (inLτ1+τ2 v) of e1 | e2 → e1 v case (inRτ1+τ2 v) of e1 | e2 → e2 v

Here e1 and e2 are functions and must have the same codomain type in order for the whole case expression
to have a type. This formulation allows us to have heterogeneous sums. Note also that the evaluation of e1

and e2 are lazy: only one of them will be evaluated, and only after the choice has been made.

Typing rules:

Γ ⊢ e : τ1

Γ ⊢ inLτ1+τ2 e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inRτ1+τ2 e : τ1 + τ2

Γ ⊢ e0 : τ1 + τ2 Γ ⊢ e1 : τ1 → τ3 Γ ⊢ e2 : τ2 → τ3

Γ ⊢ case e0 of e1 | e2 : τ3

To give an example of the sum type, consider the sum of two unit types, unit + unit. This type has exactly
two elements, namely inL null and inR null. We could take this as a definition of the type bool with elements
true

△
= inL null and false

△
= inR null. The lazy conditional statement if b then e1 else e2 could then be written

as case b of λz. e1 |λz. e2.

OCaml has a construct that is a generalization of the sum type. The OCaml syntax is

type t = C1 of t1 | ... | Cn of tn | D1 | ... | Dm.

Such datatypes are also called variants. The Ci and Di are constructors, and must be globally (across all
types) unique to avoid confusion as to which type a particular constructor refers to (in our sum type, the
ambiguity is resolved by decorating inL and inR with subscripts τ1 + τ2).

4 Denotational Semantics

We now give the denotational semantics for type domains of λ→+∗, the strongly-typed λ-calculus with sum
and product types.

T [[τ → τ ′ ]]
△
= T [[τ ]] → T [[τ ′ ]]

T [[τ ∗ τ ′ ]]
△
= T [[τ ]] × T [[τ ′ ]]

T [[τ + τ ′ ]]
△
= T [[τ ]] + T [[τ ′ ]]

As before, our contract for this language is:

ρ |= Γ ∧ Γ ⊢ e : τ ⇒ C[[e ]]Γρ ∈ T [[τ ]].
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The remaining semantic rules are:

C[[(e1, e2)]]Γρ
△
= ⟨C[[e1 ]]Γρ, C[[e2 ]]Γρ⟩

C[[#1 e ]]Γρ
△
= π1(C[[e ]]Γρ)

C[[#2 e ]]Γρ
△
= π2(C[[e ]]Γρ)

C[[ inLτ1+τ2 e ]]Γρ
△
= ι1(C[[e ]]Γρ)

C[[ inRτ1+τ2 e ]]Γρ
△
= ι2(C[[e ]]Γρ)

C[[case e0 of e1 | e2 ]]Γρ
△
=

{
(C[[e1 ]]Γρ) v, if C[[e0 ]]Γρ = ι1 v,

(C[[e2 ]]Γρ) v, if C[[e0 ]]Γρ = ι2 v

= case C[[e0 ]]Γρ of ι1 v → (C[[e1 ]]Γρ) v | ι2 v → (C[[e2 ]]Γρ) v,

where πn is the (mathematical) projection operator that selects the nth element of a product and ιn is the
injection operator that injects an element into a coproduct. These meta-operations are also well-typed, but
we omit the annotations:

πi : T [[τ1 ]] × T [[τ2 ]] → T [[τi ]] ιi : T [[τi ]] → T [[τ1 ]] + T [[τ2 ]]

for i ∈ {1, 2}.

5 Adding Recursion

So far this language is not Turing-complete, because there is no way to do unbounded recursion. This is true
because there is no possibility of nontermination. The easiest way to add this capability to the language is
to add support for recursive functions.

To do this, we first extend the definition of an expression:

e ::= · · · | rec f : σ → τ .λx : σ. e

The new keyword rec defines a recursive function named f such that both x and f are in scope inside e.
Intuitively, the meaning of rec f : σ → τ .λx : σ. e is the least fixpoint of the map f 7→ λx : σ. e, where both f
and λx : σ. e are of type σ → τ .

For example, we would write the recursive function

f(x) = if x > 0 then 1 else f(x + 1)

as

rec f : int → int .λx : int. if x > 0 then 1 else f(x + 1).

The small-step operational semantics evaluation rule for rec is:

rec f : σ → τ .λx : σ. e → λx : σ. e{(rec f : σ → τ .λx : σ. e)/f}

and the typing rule for rec is
Γ, f : σ → τ , x : σ ⊢ e : τ

Γ ⊢ (rec f : σ → τ .λx : σ. e) : σ → τ
.

The denotational semantics is defined in terms of the fix operator on domains:

C[[rec f : σ → τ .λx : σ. e ]]Γρ
△
= fix λg ∈ T [[σ → τ ]]. λv ∈ T [[σ ]]. C[[e ]]Γ[(σ → τ)/f, σ/x]ρ[v/x, g/f ]
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Of course, whenever we take a fixpoint, we have to make sure that a fixpoint exists. We know that the
function satisfies continuity and monotonicity because we are writing in the metalanguage. However, for a
fixpoint to exist, T [[σ → τ ]] must be a pointed CPO. But for this to be true, we have to make sure ⊥ is in
the codomain of the function. We therefore redefine

T [[ int ]]
△
= Z⊥ T [[bool ]]

△
= 2⊥ T [[unit ]]

△
= {null}⊥

and define the functions and product domains T [[σ → τ ]] and T [[σ ∗ τ ]] inductively as before, which will now
be pointed CPOs.

In the disjoint sum (coproduct) domain construction shown in class, we tagged the elements of the two
domains and took the union. This resulted in a non-pointed CPO, even if the two domains were pointed
CPOs, so we muist add a new bottom element ⊥. But this construction is quite unsatisfactory, since iterating
it leads to the proliferation of useless bottoms. Instead, we use the following alternative construction. Given
pointed CPOs D and E, form the domain consisting of the set

{ι1(d) | d ∈ D ∧ d ̸= ⊥D} ∪ {ι2(e) | e ∈ E ∧ e ̸= ⊥E} ∪ {⊥},

where ⊥ is a new element, ordered by

x ⊑ y
△⇐⇒ x = ⊥ ∨ (x = ι1(d) ∧ y = ι1(d′) ∧ d ⊑D d′) ∨ (x = ι2(e) ∧ y = ι2(e′) ∧ e ⊑E e′).

This is called the smash sum of D and E.

We also have to change our contract to account for the possibility of nontermination:

ρ |= Γ ∧ Γ ⊢ e : τ ⇒ C[[e ]]Γρ ∈ T [[τ ]]⊥.

Finally, we have to lift our semantics to take nontermination into account. For example, we should change
the denotation of a pair to:

C[[(e1, e2)]]Γρ
△
=

{
⟨C[[e1 ]]Γρ, C[[e2 ]]Γρ⟩, if both C[[e1 ]]Γρ ̸= ⊥ and C[[e2 ]]Γρ ̸= ⊥,
⊥, otherwise.

We can write this conveniently using our metalanguage let construct:

C[[(e1, e2)]]Γρ
△
= let v1 ∈ T [[τ1 ]] = C[[e1 ]]Γρ in

let v2 ∈ T [[τ2 ]] = C[[e2 ]]Γρ in

⌊⟨v1, v2⟩⌋,

where Γ ⊢ (e1, e2) : τ1 ∗ τ2. Recall that mathematical let is defined as:

let x ∈ D = e1 in e2
△
= (λx ∈ D . e2)∗ e1.
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