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1 Denotational Semantics

So far we have looked at

• operational semantics involving rules for state transitions,

• definitional semantics involving translations from a source language to a target language, where the
target language is simpler or better understood, and

• axiomatic semantics involving logical rules for deriving relations between preconditions and postcon-
ditions.

Another approach, known as denotational semantics, involves translations to mathematical objects. The
objects in question are functions with well-defined extensional meaning in terms of sets. The main challenge
is getting a precise understanding of the sets over which these function operate.

2 Diagonalization

For example, consider the identity function λx.x. This clearly represents some kind of function that takes
any input object x to itself. But what is its domain? An even more interesting example is the function
λx. xx. Let’s say that the domain of this function is D. Then x represents some element of D, since x is an
input to the function. But in the body, x is applied to x, so x must also represent some function D → E.
For this to make sense, it must be possible to interpret every element of D as an element of D → E. Thus
there must be a function f : D → (D → E) taking x ∈ D to the function f(x) : D → E that it represents.

It is conceivable that f could actually be a bijection between D and the function space D → E. However,
this is impossible if E contains more than one element. In fact, f cannot even be onto. This follows by
a diagonalization argument. Let e0, e1 ∈ E, e0 ̸= e1. For any function f : D → (D → E), we can define
d : D → E by d = λx. if f x x = e0 then e1 else e0. Then for all x, d x ̸= f x x, so d ̸= f x for any x.

This type of argument is called diagonalization because for countable sets D, the function d is constructed
by arranging the values f x y for x, y ∈ D in a countable matrix and going down the diagonal, creating a
function that is different from every f x on at least one input (namely x).

0 1 2
f0 f0 0 f0 1 f0 2 . . .
f1 f1 0 f1 1 f1 2 . . .
f2 f2 0 f2 1 f2 2 . . .
...

...

Thus for any function f : D → (D → E), where E contains more than one element, there always exists a
function d : D → E that is not f x for any x ∈ D. This says that the cardinality (size) of the set of functions
D → E is strictly larger than the cardinality of D, no matter what the sets D and E are, as long as E
contains at least two elements.

1



3 Denotational Semantics of IMP

When defining denotational semantics, we will use the notation λx ∈ D. e to indicate that the domain of the
function is the set D. This will ensure that we are precise in identifying the extension of functions.

This is not really a type declaration. Later, we will introduce types and write them as λx : τ . e. The
distinction is that types are pieces of language syntax, whereas sets are semantic objects.

The syntax of IMP was

a ::= n | x | a0 ⊕ a1

b ::= true | false | ¬b | b0 ∧ b1 | a0 = a1 | · · ·
c ::= skip | x := a | c0; c1 | if b then c1 else c2 | while b do c

The syntactic categories of a, b, c are arithmetic expressions AExp, Boolean expressions BExp, and commands
Com, respectively.

To define the denotational semantics, we will refer to states, which are functions Σ = Var → Z.

A[[a ]] ∈ Σ → Z

B[[b ]] ∈ Σ → 2 where 2 = {true, false}
C[[c ]] ∈ Σ → ?

Intuitively, we would like the meaning of commands to be functions from states to states. Given an initial
state, the function produces the final state reached by applying the command. However, there will be no
such final state if the program does not terminate (e.g., while true do skip). Thus the function would have
to be partial. However, we can make it a total function by including a special element ⊥ (called bottom)

denoting nontermination. For any set S, let S⊥
△
= S ∪ {⊥}. Then C[[c ]] ∈ Σ → Σ⊥, where C[[c ]]σ = τ if c

terminates in state τ on input state σ, and C[[c ]]σ = ⊥ if c does not terminate on input state σ.

Now we can define the denotational semantics of expressions by structural induction. This induction is a
little more complicated since we are defining all three functions at once. However, it is still well-founded
because we only use the function value on subexpressions in the definitions. For numbers,

A[[n ]]
△
= λσ ∈ Σ.n = {(σ, n) | σ ∈ Σ}.

For the remaining definitions, we use the shorthand of defining the value of the function given some σ ∈ Σ.

A[[x ]]σ
△
= σ(x)

A[[a1 ⊕ a2 ]]σ
△
= A[[a1 ]]σ ⊕A[[a2 ]]σ

B[[true ]]σ
△
= true

B[[ false ]]σ
△
= false

B[[¬b ]]σ
△
=

{
true, if B[[b ]]σ = false,
false, if B[[b ]]σ = true.

We can express negation more compactly with a meta-conditional expression:

B[[¬b ]]σ
△
= if B[[b ]]σ then false else true.

Alternatively, we can write down the function extensionally as a set of ordered pairs:

{(σ, true) | σ ∈ Σ ∧ ¬B[[b ]]σ} ∪ {(σ, false) | σ ∈ Σ ∧ B[[b ]]σ}.
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For commands, we can define

C[[skip ]]σ
△
= σ

C[[x := a ]]σ
△
= σ[A[[a ]]σ/x]

C[[ if b then c1 else c2 ]]σ
△
=

{
C[[c1 ]]σ, if B[[b ]]σ = true,
C[[c2 ]]σ, if B[[b ]]σ = false

= if B[[b ]]σ then C[[c1 ]]σ else C[[c2 ]]σ

C[[c1 ; c2 ]]σ
△
=

{
C[[c2 ]] (C[[c1 ]]σ) , if C[[c1 ]]σ ̸= ⊥,
⊥, if C[[c1 ]]σ = ⊥

= if C[[c1 ]]σ = ⊥ then ⊥ else C[[c2 ]] (C[[c1 ]]σ) .

For the last case involving sequential composition c1 ; c2, another way of achieving this effect is by defining
a lift operator ( · )∗ : (D → E⊥) → (D⊥ → E⊥) on functions:

(f)∗ △
= λx.if x = ⊥ then ⊥ else f(x).

With this notation, we have

C[[c1 ; c2 ]]σ
△
= (C[[c2 ]])∗ (C[[c1 ]]σ) .

We have one command left: while b do c. This is equivalent to if b then (c ; while b do c) else skip, so a first
guess at a definition might be:

C[[while b do c ]]σ
△
= if B[[b ]]σ then C[[c ; while b do c ]]σ else σ

= if B[[b ]]σ then (C[[while b do c ]])∗(C[[c ]]σ) else σ,

but this appears to be circular. However, we can fix this by taking a fixpoint in some domain. Abbreviating
C[[while b do c ]] by W , we would like

W σ = if B[[b ]]σ then (W )∗(C[[c ]]σ) else σ,

or rather

W = λσ ∈ Σ. if B[[b ]]σ then (W )∗(C[[c ]]σ) else σ.

Define F as

F △
= λw ∈ Σ → Σ⊥ . λσ ∈ Σ. if B[[b ]]σ then (w)∗(C[[c ]]σ) else σ.

Then we would like W = F W ; that is, we are looking for a fixpoint of F . But how do we take fixed points
without using the dreaded Y combinator? Eventually we will have a function fix with W = fixF , where
F ∈ (Σ → Σ⊥) → (Σ → Σ⊥). The solution will be to think of a while statement as the limit of a sequence
of approximations. Intuitively, by running through the loop more and more times, we will get better and
better approximations.

The first and least accurate approximation is the totally undefined function

W0
△
= λσ ∈ Σ.⊥.

The next approximation is

W1
△
= F W0

= λσ ∈ Σ. if B[[b ]]σ then (W0)∗(C[[c ]]σ) else σ

= λσ ∈ Σ. if B[[b ]]σ then ⊥ else σ.
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This simulates one iteration of the loop. We could then simulate two iterations by:

W2
△
= F W1 = λσ ∈ Σ. if B[[b ]]σ then (W1)∗(C[[c ]]σ) else σ.

In general,

Wn+1
△
= F Wn = λσ ∈ Σ. if B[[b ]]σ then (Wn)∗(C[[c ]]σ) else σ.

Then denotation of the while statement should be the limit of this sequence. But how do we take limits in
spaces of functions? To do this, we need some structure on the space of functions. We will define an ordering
⊑ on these functions such that W0 ⊑ W1 ⊑ W2 ⊑ · · · , then find the least upper bound of this sequence.

4 Partial Orders

A partial order (also known as a partially ordered set or poset) consists of a set S and a binary relation ⊑ on
S that is

• reflexive: for all d ∈ S, d ⊑ d;

• transitive: for all d, e, f ∈ S, if d ⊑ e and e ⊑ f , then d ⊑ f ; and

• antisymmetric: for all d, e ∈ S, if d ⊑ e and e ⊑ d, then d = e.

Examples

• (Z, ≤), where Z is the set of integers and ≤ is the usual ordering.

• (Z, =). Note that unequal elements are incomparable in this order.

• (2S , ⊆). Here 2S denotes the powerset of S, or the set of all subsets of S, often written P(S).

• (2S , ⊇). In fact, if (S, ⊑) is a partial order, then so is (S, ⊒), where s ⊒ t
△
= t ⊑ s.

• (N, |), where N = {0, 1, 2 . . .} and a | b
△⇐⇒ (a divides b) ⇔ (b = ka for some k ∈ N). Note that for

any n ∈ N, we have n | 0; we call 0 an upper bound for N (but only in this ordering, of course!).

Non-examples

• (Z, <) is not a partial order, because < is not reflexive.

• (Z, ⊑), where m ⊑ n
△⇐⇒ |m | ≤ |n |, is not a partial order because ⊑ is not anti-symmetric: −1 ⊑ 1

and 1 ⊑ −1, but −1 ̸= 1.

The “partial” in partial order comes from the fact that our definition does not require these orders to be
total. For example, in the partial order (2{a,b}, ⊆), the elements {a} and {b} are incomparable: neither
{a} ⊆ {b} nor {b} ⊆ {a}.
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4.1 Hasse Diagrams

Partial orders can be described pictorially using Hasse diagrams1. In a Hasse diagram, each element of the
partial order is displayed as a (possibly labeled) point, and lines are drawn between these points, according
to these rules:

1. If x and y are elements of the partial order, and x ⊑ y, then the point corresponding to x is drawn
lower in the diagram than the point corresponding to y.

2. A line is drawn between the points representing x and y iff x ⊑ y and there does not exist a z strictly
between x and y in the partial order; that is, the ordering relation between x and y is not due to
transitivity.

Here is an example of a Hasse diagram for the subset relation on the set 2{a,b,c}:

..{a, b, c}

.{a, b} .{a, c} .{b, c}

.{a} .{b} .{c}

.∅

A partial order like (Z, =) in which no distinct elements are related to each other is called a discrete partial
order.

Given any partial order (S, ⊑), we can define a new partial order (S⊥, ⊑⊥) such that S⊥ = S ∪ {⊥},
d1 ⊑⊥ d2 if d1, d2 ∈ S and d1 ⊑ d2, and ⊥ ⊑⊥ d for all d ∈ S⊥. Thus S⊥ is the set S with a new least
element ⊥ added below everything in S.

In our semantic domains, we can think of ⊑ as “less information than”. Thus nontermination ⊥ contains
less information than any element of S.

If we lift a discrete partial order (e.g., Z⊥), we get a flat partial order. The only relationships among distinct
elements are between ⊥ and every other element.

If a partial order has a least element ⊥, that partial order is called pointed. All lifted partial orders, including
flat partial orders, are pointed.

1Named after Helmut Hasse, 1898-1979. Hasse published fundamental results in algebraic number theory, including the
Hasse (or “local-global”) principle. He succeeded Hilbert and Weyl as the chair of the Mathematical Institute at Göttingen.
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