CS 6110 S11 Lecture 17 Compiling with continuations 4 March 2011

1 Compiling with continuations

Because continuations expose control explicitly, they make a good intermediate language for compilation,
because control is exposed explicitly in machine language as well. We can show this by writing a translation
from a stripped-down version of FL to a language similar to assembly.

The result of doing such a translation is that we will have a fairly complete recipe for compiling any of the

languages we have talked about into the class down to the hardware.

2 Source language

Our source language is the lambda calculus with tuples and numbers. We assume call-by-value semantics:

e == n | x| Axe | eger | (eg,e1,...,en) | (#ne) | eg+er

The target language looks like assembly language:

p = bby;bby;...;bb,
bb = lb:cyjce;...;cpyjump x
c = mov I,y

mov z,n

mov x, lb

|

|

| add x1, 2,23
| load z1,x2[n]
| store xq,xa[n|
|

malloc n

A program p consists of a series of basic blocks bb, each with a distinct label {b. Each basic block contains
a sequence of commands ¢, and ends with a jump instruction. Commands correspond to assembly language
instructions and are largely self-evident; the only one that is high-level is the malloc instruction, which
allocates n words of space and places the address of the space into a special register ro. (This could be
implemented as simply as add rg, 79, —n if we are not worried about garbage.)

The jump instruction is an indirect jump. It makes the program counter take the value of the argument

register: essentially, jump x acts like mov pc, z.

3 Intermediate language 1

The first intermediate language, IL1, is in continuation-passing style:

v = n | x| Akx.c | halt

| Az.c
e == v | vot+uv | (v1,v2,...,0,) | (#nv)
c == letx=ceinc

| Vg V1 V2

| Vo V1

Some things to note about the intermediate language:

e Lambda abstractions corresponding to continuations are marked with a underline. These are considered
administrative lambdas that we will eliminate at compile time, either by reducing them or by converting
them to real lambdas.

e There are no subexpressions in the language (e does not occur in its own definition).
e Commands c look like basic blocks:

let 1y = €5 in
let To = €3 in

let ,, = e, Iin
Vo V1 V2

e Lambdas are not closed and can occur inside other lambdas.

The contract of the translation is that [e]]k will evaluate e and pass its result to the continuation k. To
translate an entire program, we use k = halt, where halt is the continuation to send the result of the entire
program to. Here is the translation from the source to the first intermediate language:

[z]k = k=«
[n]k = kn
[Mz.e]k = k (\xk'.([e] k')

[eo e]k = [[eo]](gf.[[el]](gv.(fm)))

[(e1,ea,....ex)]k = [[el]]<Ax1....[[en]](A:En.Iett:(xl,:cg,...,xn) in (k t)))
[#ne]k = [e](At.lety=#ntin (ky))
[(e1 +e)]k = [er](Azr.[ea](Awa. let z = z1 + 22 in (k 2)))

Let’s see an example. We translate the expression [(Aa.(#1 a)) (3,4)]k, using k = halt.

[(Aa.(#1 a)) (3,4)] k

[Aa.(#1 a)] (Af-[3,)] (Av.(f v k)))

ALIGH]A.(f v k) (Nak’.[#1 a] K

Af.[[3}](Am1.[[4]}(Ax2. let b= (21, 22) in Qu.(f v k)) b))) (Nak'.[#1 a] k')

(
(M. (Axl.(gxz. let b = (1, 22) in (Mv.(f v k)) b) 4) 3) (Aak’.[#1 a] ¥)
(

M. (Axl.(m. let b= (21, 22) in (Mv.(f v k)) b) 4) 3) (Aak’.Ja] (ML let y = #1 t in &' 1))

Clearly, the translation generates a lot of administrative lambdas, which will be quite expensive if they are
compiled into machine code. To make the code more efficient and compact, we will optimize it using some
simple rewriting rules to eliminate administrative lambdas.

Q—Reduction

We can eliminate unnecessary application to a variable, by copy propagation:

(Az.e) y - e{y/z}

Other unnecessary administrative lambdas can be converted into lets:

(Az.c)v Lletz=vine

We can also perform administrative n-reductions:

ek xSk

If we apply these rules to the expression above, we get

let f = (A\ak'.let y = #1a in k'y) in
let z1 = 3in
let o = 4 in
let x3 = (z1, x2) in

fl‘gk

This is starting to look a lot more like our target language.

The idea of separating administrative terms from real terms and performing a compile-time partial evaluation
is powerful and can be used in many other contexts. Here, it allows us to write a very simple CPS conversion
that treats all continuations uniformly, and perform a number of control optimizations.

Note that we may not be able to remove all administrative lambdas. Any that cannot be reduced using the
rules above are converted into real lambdas.

3.1 Tail call optimization

A tail call is a function call that determines the result of another function. A tail-recursive function is one
whose recursive calls are all tail calls. Continuations make tail calls easy to optimize. For example, the
following program has a tail call from f to g:

let g =Az.#1 x in
let f = Ax.gx
in

f(2,3)

The translation of the body of f is (¢ (Ay.k’ y) x), which permits optimization by -reduction to (g k x). In
this optimized code, g does not bother to return to f, but rather jumps directly back to f’s caller. This
is an important optimization for functional programming languages, where tail-recursive calls that take up
linear stack space are converted into loops that take up constant stack space.

4 Intermediate Language 1 — Intermediate Language 2

The next step is the translation from Intermediate language 1 to Intermediate Language 2. In this interme-
diate language, all lambdas are at the top level, with no nesting:

P = letxy=Xkx1...2y.cin P
| let ze =Axy...2p.cin P
| ¢
¢ == letx=ecine | zgz1... Ty
e u= n | x| halt | z1+x2 | (z1,22,...,2n) | #nx

The translation requires the construction of closures that capture all the free variables of the lambda ab-
stractions in intermediate language 1. We have covered closure conversion earlier; it too can be phrased as
a translation that exploits compile-time partial evaluation.

5 Intermediate Language 2 — Assembly

The translation is given below. Note: ra is the name of the dedicated register that holds the return address.

Plp] =
Cle] =

Plec] =
Pllet xp = Mkxq ... xy.cin p] =

Pllet . = Azq ... zp.cin p] =

Clllet x1 =z2inc] =
Cllet zy = z2 + x5 in c] =

Cllet zg = (x1,22,...,2,) inc] =

Cllet z1 =#n z3inc] =
Cleo kx1 ... zp] =

program for p

sequence of commands cy;¢o;... ;¢
main : C[[c]; halt :

x¢:mov k,ra;

mov Iy, ap,

MOV Ty, Ay
Clel;
Plr]

Te i MOV X1,07;

MoV Ty, Gy
Clel;

Plrl

mov x1, 22;C[c]
add z1, xo, 23;C[c]
malloc n;

mov T, To;

store x1, zo[0];

store x,,, zo[n — 1];
Clc]

load 1, z2[n — 1];C[c]
mov ra, k;

mov a1, T1;

MOV Gy, Ty

jump zo

At this point, we are still assuming an infinite supply of registers. We need to do register allocation and
possibly spill registers to a stack to obtain working code.

While this translation is very simple, it is possible to do a better job of generating calling code. For example,
we are doing a lot of register moves when calling functions and when starting the function body. These could

be optimized away by a smarter compiler.

