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1 State

Program state refers to the ability to change the values of program variables over time. The λ-calculus and the
FL language do not have state in the sense that once a variable is bound to a value, it is impossible to change
that value as long as the variable is in scope. Although state is not a necessary feature of a programming
language—for example, the λ-calculus is Turing complete but does not have a notion of state—it is a common
feature of most languages, and most programmers are accustomed to it.

1.1 Programming Paradigms

Two major programming paradigms are functional (stateless) and imperative (stateful). In a purely func-
tional language, expressions resemble mathematical formulas. This allows the programmer to reason equa-
tionally, avoiding many of the pitfalls associated with a constantly changing execution environment. For
example, in a functional language, it is always the case that

x = e ⇔ f(x) = f(e).

Concurrency is easier to implement with a functional language because of confluence (aka the Church–Rosser
property).

On the other hand, imperative programming more closely resembles the way we perceive the real world in
that there exists an underlying notion of state that can change over time. We have seen an example of state
and imperative programming with the language IMP.

2 Mutable Variables

Mutable variables (aka pointers, aka references) provide another level of mutable state. Mutable variables can
be updated in a way that cannot be handled by the simple substitution rules of their functional counterparts.
They are somewhat more complicated than ordinary variable bindings because they introduce the extra
complication of aliasing—the possibility of naming the same data value with different names.

For example, consider the following code:

let x = ref 1 in
let y = x in
let z = (x := 2) in
!y

The first x points to a newly allocated location holding the value 1. Then y is assigned x, the pointer to the
location holding 1. Then the value pointed to by x is updated to be 2. When y is dereferenced with !y, the
result is now 2. Here x and y are aliases of the same data value. When you kick x, y jumps!
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3 The FL! Language

3.1 Syntax

The syntax for FL! is as follows. There is a countable set Loc of memory locations, denoted generically by
ℓ, that can hold data values. All FL expressions are FL! expressions. In addition, there are a few more:

e ::= . . . | ref e | !e | e1 := e2 | e1 ; e2 | ℓ

3.2 The Store

We define a store as a partial function σ : Loc ⇀ Val with finite domain. A store is very much like an
environment, except that now variables are bound to locations, not to the data values themselves, and the
locations are bound to data values. We use the following functions to manipulate stores:

lookup σ ℓ = σ(ℓ)
update σ ℓ v = σ[v/ℓ]

malloc σ v = (ℓ, σ[v/ℓ]) where ℓ is a new location not already in domσ

empty = the completely undefined store with domain ∅.

Here σ[v/ℓ] refers to the store σ with the location ℓ changed to contain the value v, if ℓ ∈ domσ, otherwise
it refers to σ with the new location ℓ containing value v added to dom σ.

3.3 Small-Step Semantics

A program in FL! is a configuration ⟨e, σ⟩, where e is an FL! expression and σ is a store. The small-step
SOS is given by augmenting FL with the following additional evaluation contexts and reduction rules:

E ::= . . . | ref E | ! E | E := e | v := E | E ; e

The hole [ · ] is already included in the . . . . The evaluation contexts generated by the above grammar are
all the contexts E[ · ] in which a reduction may be applied. The contexts specify a family of rules collectively
called the context rule

⟨e, σ⟩ → ⟨e′, σ′⟩
⟨E [e ], σ⟩ → ⟨E [e′ ], σ′⟩

The reduction rules are

⟨ref v, σ⟩ → ⟨ℓ, σ[v/ℓ]⟩, ℓ /∈ domσ ⟨!ℓ, σ⟩ → ⟨σ(ℓ), σ⟩, ℓ ∈ dom σ

⟨ℓ := v, σ⟩ → ⟨null, σ[v/ℓ]⟩, ℓ ∈ domσ ⟨v; e, σ⟩ → ⟨e, σ⟩.

It can be shown by induction that it is impossible to create dangling pointers in FL!.

4 Translating FL! to FL

The following translation maps an FL! expression e to a function [[e ]] taking an environment ρ and store σ
and producing a pair ⟨e′, σ′⟩, where e′ is an FL expression and σ′ is a store. Here let ⟨x, σ′⟩ = [[e0 ]]ρσ in . . .
is syntactic sugar for

let p = [[e0 ]]ρσ in let b = #1 p in let σ′ = #2 p in . . . .
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[[n ]]ρσ = ⟨n, σ⟩
[[x ]]ρσ = ⟨ρ(x), σ⟩

[[ if e0 then e1 else e2 ]]ρσ = let ⟨x0, σ′⟩ = [[e0 ]]ρσ in

if x0 then [[e1 ]]ρσ′ else [[e2 ]]ρσ′

[[ref e ]]ρσ = let ⟨x′, σ′⟩ = [[e ]]ρσ in malloc σ′ x′

[[ !e ]]ρσ = let ⟨x′, σ′⟩ = [[e ]]ρσ in ⟨lookupσ′ x′, σ′⟩
[[e1 := e2 ]]ρσ = let ⟨x1, σ1⟩ = [[e1 ]]ρσ in

let ⟨x2, σ2⟩ = [[e2 ]]ρσ1 in

⟨null, update σ2 x1 x2⟩
[[e1 ; e2 ]]ρσ = let ⟨x, σ1⟩ = [[e1 ]]ρσ in [[e2 ]]ρσ1 x ̸∈ FV(e2)

[[λx. e ]]ρlex σlex = ⟨λvσdyn . [[e ]]ρlex[v/x]σdyn, σlex⟩
[[e1 e2 ]]ρdynσdyn = let ⟨x1, σ1⟩ = [[e1 ]]ρdynσdyn in

let ⟨x2, σ2⟩ = [[e2 ]]ρdynσ1 in

x1 x2 σ2
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