
CS 6110 S11 Lecture 10 Semantics via Translation 16 February 2010

Our goal is to study programming language features using various semantic techniques. So far we have seen
small-step and big-step operational semantics. However, there are other ways to specify semantics, and they
can give useful insights that may not be apparent in the operational semantics. A different way to give
semantics is by defining a translation from the programming language to another language that is better
understood (and typically simpler). This is essentially a process of compilation, in which a source language
is converted to a target language. Later on we will see that the target language can even be mathematical
structures, in which case we refer to the semantics as a denotational semantics. A third style of semantics is
axiomatic semantics, which we will also discuss later in the course.

1 Translation

We map well-formed programs in the original language into items in a meaning space. These items may be

• programs in an another language (definitional translation);

• mathematical objects (denotational semantics); an example is taking λx : int. x to {(0, 0), (1, 1), . . .}.

Because they define the meaning of a program, these translations are also known as meaning functions or
semantic functions. We usually denote the semantic function under consideration by [[ · ]]. An object e in the
original language is mapped to an object [[e ]] in the meaning space under the semantic function. We may
occasionally add an annotation to distinguish between different semantic functions, as for example [[e ]]cbn or
C[[e ]].

2 Translating CBN λ-Calculus into CBV λ-Calculus

The call-by-name (lazy) λ-calculus was defined with the following reduction rule and evaluation contexts:

(λx. e1) e2
1−→ e1 {e2/x} E ::= [ · ] | E e.

The call-by-value (eager) λ-calculus was similarly defined with

(λx. e) v
1−→ e{v/x} E ::= [ · ] | E e | v E.

These are fine as operational semantics, but the CBN semantics rules do not adequately capture why CBV
is as expressive as CBN. We can see this better by constructing a translation from CBN to CBV. That
is, we treat the CBV calculus as the meaning space. This translation exposes some issues that need to be
addressed when implementing a lazy language.

To translate from the CBN λ-calculus to the CBV λ-calculus, the key issue is how to make function appli-
cation lazy in the arguments. CBV evaluation will eagerly evaluate all the argument expressions, so they
need to be protected from evaluation. This is accomplished by wrapping the expressions passed as function
arguments inside λ-abstractions to delay their evaluation. When the value of a variable is really needed, the
abstraction can be passed a dummy parameter to evaluate its body.
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We define the semantic function [[ · ]] by induction on the structure of the translated expression:

[[x ]]
△
= x id (id = λz. z)

[[λx. e ]]
△
= λx. [[e ]]

[[e1 e2 ]]
△
= [[e1 ]] (λz. [[e2 ]]), where z /∈ FV([[e2 ]]).

For an example, recall that we defined:

true
△
= λxy. x false

△
= λxy. y if

△
= λxyz. xyz.

The problem with this construction in the CBV λ-calculus is that if b e1 e2 evaluates both e1 and e2, regardless
of the truth value of b. The conversion above fixes this problem.

[[true ]] = [[λxy. x ]] = λxy. [[x ]] = λxy. x id

[[ false ]] = [[λxy. y ]] = λxy. [[y ]] = λxy. y id

[[ if ]] = [[λxyz. xyz ]] = λxyz. [[(xy)z ]] = λxyz. [[xy ]] (λd. [[z ]])
= λxyz. [[x ]] (λd. [[y ]]) (λd. [[z ]])
= λxyz. (x id) (λd. y id) (λd. z id).

Now, translating if true e1 e2 and evaluating under the CBV rules,

[[ if true e1 e2 ]] = [[ if ]] (λd. [[true ]]) (λd. [[e1 ]]) (λd. [[e2 ]])
= (λxyz. (x id) (λd. y id) (λd. z id)) (λd. [[true ]]) (λd. [[e1 ]]) (λd. [[e2 ]])
→ ((λd. [[true ]]) id) (λd. (λd. [[e1 ]]) id) (λd. (λd. [[e2 ]]) id)
→ [[true ]] (λd. [[e1 ]]) (λd. [[e2 ]])
= (λxy. x id) (λd. [[e1 ]]) (λd. [[e2 ]])
→ (λd. [[e1 ]]) id

→ [[e1 ]],

and e2 was never evaluated.

3 Adequacy

Both the CBV and CBN λ-calculus are deterministic systems in the sense that there is at most one reduction
that can be performed on any term. When an expression e in a language is evaluated in a deterministic
system, one of three things can happen:

1. The computation can converge to a value: e ⇓ v.

2. The computation can converge to a non-value. When this happens, we say the computation is stuck.

3. The computation can diverge: e ⇑.

A semantic translation is adequate if these three behaviors in the source system are accurately reflected in
the target system, and vice versa. One aspect of this relationship is captured in the following diagram:

[[e ]]

e

v′

v

[[v ]]

[[ · ]] [[ · ]]
??

-

-

∗

∗

≈
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If an expression e converges to a value v in zero or more steps in the source language, then [[e ]] must
converge to some value v′ that is equivalent (e.g. β-equivalent) to [[v ]], and vice-versa. This is formally
stated as two properties, soundness and completeness. For our CBN-to-CBV translation, these properties
take the following form:

3.1 Soundness

[[e ]] ∗→
cbv

v′ ⇒ ∃v e
∗→

cbn
v ∧ v′ ≈ [[v ]]

In other words, any computation in the CBV domain starting from the image [[e ]] of a CBN program e must
accurately reflect the computation in the CBN domain.

3.2 Completeness

e
∗→

cbn
v ⇒ ∃v′ [[e ]] ∗→

cbv
v′ ∧ v′ ≈ [[v ]]

In other words, any computation in the CBN domain starting from e must be accurately reflected by the
computation in the CBV domain starting from the image [[e ]].

3.3 Nontermination

It must also be the case that the source and target agree on nonterminating executions. We write e ⇑ and
say that e diverges if there exists an infinite sequence of expressions e1, e2, . . . such that e → e1 → e2 → . . . .
The additional condition for adequacy is

e ⇑cbn ⇔ [[e ]] ⇑cbv .

The direction ⇐ of this implication can be considered part of the requirement for soundness, and the direction
⇒ can be considered part of the requirement for completeness. Adequacy is the combination of soundness
and completeness.

4 Proving Adequacy *

We would like to show that evaluation commutes with translation in our CBN → CBV translation. To do
this, we first need a notion of target term equivalence (≈) that is preserved by evaluation. This is made more
challenging because as evaluation takes place in the target language, intermediate terms are generated that
are not the translation of any source term. For some translations (but not this one), the reverse may also
happen. Therefore, equivalence needs to allow for some extra β-redexes that appear during translation. We
can define this equivalence by structural induction on CBV target terms according to the following rules:

x ≈ x t ≈ t′

λx. t ≈ λx. t′
t0 ≈ t′0 t1 ≈ t′1

t0 t1 ≈ t′0 t′1
t ≈ (λz. t) id, where z ̸∈ FV(t)

Here, t represents target terms, to keep them distinct from source terms e. We also include rules so that the
relation ≈ is reflexive, symmetric, and transitive. One can show easily that if two terms are equivalent with
respect to this relation, then they have the same β-normal form.
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To show adequacy, we show that each evaluation step in the source term is mirrored by a sequence of
evaluation steps in the corresponding target term, and vice versa. So we define a correspondence > between
source and target terms that is more general than the translation [[ · ]] and is preserved during evaluation of
both source and target.

We write e > t to mean that CBN term e corresponds to CBV term t. The following proposition captures
the idea that CBV evaluation simulates CBN evaluation at the level of individual steps:

e > t ∧ e → e′ ⇒ ∃t′ t
∗−→ t′ ∧ e′ > t′ (1)

This can be visualized as a commutative diagram:

t

e

t′

e′

6

?
> >6

?
-

-

∗ (≈ [[e′ ]])

In fact, since in this case the source language cannot get stuck during evaluation, and both languages have
deterministic evaluation, (1) ensures that evaluation in each language corresponds to the other.

We define the relation > in such a way that e > [[e ]]. Then, using (1), we can show that any trace in the
source language produces a corresponding trace in the target by induction on the number of source-language
steps.

We define the relation > by the following rules:

x > x id
e > t

λx. e > λx. t

e0 > t0 e1 > t1
e0 e1 > t0 (λ . t1)

e > t

e > (λ . t) id
(2)

For simplicity, we ignore the fresh variable that would be used in the new lambda abstraction in the last two
rules.

The first three rules of (2) ensure that a source term corresponds to its translation. The last rule is different;
it takes care of the extra β-reductions that may arise during evaluation. Because the right-hand side of the >
relation becomes structurally smaller in this rule’s premise, the definition of the relation is still well-founded.
The first three rules are well-founded based on the structure of e; the last is well-founded based on the
structure of t. If we were proving a more complex translation correct, we would need more rules like the last
rule for other meaning-preserving target-language reductions.

First, let us warm up by showing that a term corresponds to its translation.

Lemma 1. e > [[e ]].

Proof. An easy structural induction on e.

• Case x: x > x id by definition.

• Case λx. e′: We have [[e ]] = λx. [[e′ ]]. By the induction hypothesis, e′ > [[e′ ]], so λx. e′ > λx. [[e′ ]] by
the second rule of (2).
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• Case e0 e1: We have [[e ]] = [[e0 ]] (λ . [[e1 ]]). By the induction hypothesis, e0 > [[e0 ]] and e1 > [[e1 ]].
Therefore by the third rule of (2), e0 e1 > [[e0 ]] (λ. [[e1 ]]).

Next, let us show that if e corresponds to t, its translation is equivalent to t.

Lemma 2. e > t ⇒ [[e ]] ≈ t.

Proof. Induction on the derivation of e > t.

• Case x > x id:
This case is trivial: [[x ]] = x id.

• Case λx. e′ > λx. t′ where e′ > t′:
Here, [[e ]] = λx. [[e′ ]]. By the induction hypothesis, [[e′ ]] ≈ t′, therefore λx. [[e′ ]] ≈ λx. t′ as required.

• Case e0 e1 > t0 (λ . t1) where e0 > t0 and e1 > t1:
Here, [[e0 e1 ]] = [[e0 ]](λ . [[e1 ]]), and by the induction hypothesis, [[e0 ]] ≈ t0 and [[e1 ]] ≈ t1. From the
definition of ≈, we have [[e0 ]](λ . [[e1 ]]) ≈ t0 (λ . t1).

• Case e > (λ . t) id where e > t:
The induction hypothesis is [[e ]] ≈ t. But t ≈ (λ . t) id, and ≈ is transitive.

Given these definitions, we can prove (1) by induction on the derivation of e > t. We will need two useful
lemmas. The first is a substitution lemma that says substituting corresponding terms into corresponding
terms produces corresponding terms:

Lemma 3. e1 > t1 ∧ e2 > t2 ⇒ e2 {e1/x} > t2 {λ. t1/x}.

Proof. We proceed by induction on the derivation of e2 > t2.

• Case x > x id:
We have e2 {e1/x} = e1 and t2{λ. t1/x} = (λ. t1) id. By the fourth rule of (2), we have e1 > (λ. t1) id.

• Case y > y id where y ̸= x:
This case is trivial, as the substitution has no effect.

• Case λx. e > λx. t where e > t:
Again, this case is trivial, as the substitutions into e2 and t2 have no effect.

• Case λy. e > λy. t where e > t, x ̸= y:
Here e2{e1/x} = λy. e{e1/x} and t2{λ. t1/x} = λy. t{λ. t1/x}. Since e > t, by the induction hypoth-
esis we have e{e1/x} > t{λ. t1/x}. Therefore by (2), λy. e{e1/x} > λy. t{λ. t1/x}, as required.

• Case e e′ > t (λ. t′), where e > t and e′ > t′:
We have e2{e1/x} = e{e1/x} e′ {e1/x}, and t2 {λ. t1/x} = t{λ. t1/x} (λ. t′ {t1/x}). From the in-
duction hypothesis, e{e1/x} > t{λ. t1/x} and e′ {e1/x} > t′ {λ. t1/x}. Therefore, by (2) we have
e{e1/x} e′ {e1/x} > t{λ. t1/x} (λ. t′ {t1/x}).
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• Case e2 > (λ . t′2) id, where e2 > t′2:
We need to show that e2 {e1/x} > ((λ . t′2) id){λ . t1/x}; that is, e2 {e1/x} > ((λ . t′2{λ . t1/x}) id).
From the induction hypothesis, we have e2{e1/x} > t′2{λ. t1/x}. By (2), this means e2 {e1/x} >
(λ . t′2{λ. t1/x}) id.

The next lemma says that if a value λx. e corresponds to a term t, then t reduces to a corresponding λ-term
λ . t′.

Lemma 4. λx. e > t ⇒ ∃t′ t → λx. t′ ∧ e > t′.

Proof. By induction on the derivation of λx. e > t.

• Case y > y id: Impossible, as y ̸= λx. e.

• Case λx. e > λx. t′ where e > t′:
Here, t = λx. t′, and the result is immediate.

• Case e0 e1 > t0 (λ. t1): Impossible, as e0 e1 ̸= λx. e.

• Case e0 > (λ. t0) id, where e0 > t0:
In this case e0 = λx. e, and t = ((λ. t0) id). By the induction hypothesis, there is some t′ such that
t0 → λx. t′ and e > t′. Since t = ((λ. t0) id) 1−→ t0 we have t → λx. t′, as required.

We are now ready to prove (1).

Proof. By induction on the derivation of e > t:

• Case x > x id: Vacuously true, as there is no evaluation step e
1−→ e′.

• Case λx. e > λx. t: A value: also vacuously true.

• Case e0 e1 > t0 (λ. t1), where e0 > t0 and e1 > t1:
We show this by cases on the derivation of e

1−→ e′:

– Case e0 e1
1−→ e′0 e1, where e0

1−→ e′0:
By the induction hypothesis, ∃t′0 e′0 > t′0 ∧ t0 → t′0. It is easy to see that t0 (λ. t1) → t′0 (λ. t1).
By the third rule of (2), e′0 e1 > t′0 (λ. t1), as required.

– Case (λx. e2) e1
1−→ e2 {e1/x}:

Here λx. e2 > t0 and e1 > t1.
By Lemma 4, there exists a t2 such that t0 → λx. t2 and e2 > t2. Therefore, we have t0 (λ . t1) →
(λx. t2) (λ . t1)

1−→ t2 {λ. t1/x}. But from the substitution lemma above (Lemma 3), we know that
e2 {e1/x} > t2{λ. t1/x}, as required.

• Case e0 > (λ. t0) id, where e0 > t0:
By the induction hypothesis, ∃t′0 e0 > t′0 ∧ t0 → t′0. It is easy to see that therefore ((λ. t0) id) 1−→ t0 →
t′0, as required.
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Having proved (1), we can show completeness of the translation. If we start with a source term e and its
translation [[e ]], we know from Lemma 1 that e > [[e ]]. From (1), we know that each step of evaluation
of e is mirrored by execution on the target side that preserves e > t. If the evaluation of e diverges, so
will the evaluation of [[e ]]. If the evaluation of e converges on a value v, then the evaluation of [[e ]] will
reach a convergent (by Lemma 4) term t such that v > t. And by Lemma 2, [[v ]] ≈ t. This demonstrates
completeness.

To show soundness of the translation, we need to show that every evaluation in the target language corre-
sponds to some evaluation in the source language. Suppose we have a target-language evaluation t → v′,
where t = [[e ]], but there is no corresponding source-language evaluation of e. There are three possibilities.
First, the evaluation of e could get stuck. This cannot happen for this source language because all terms are
either values or have a legal evaluation. Second, the evaluation of e could evaluate to a value v. But then
v must correspond to v′, because the target-language evaluation is deterministic. Third, the evaluation of e
might diverge. But then (1) says there is a divergent target-language evaluation. The determinism of the
target language ensures that cannot happen.
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