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Supplementary Lecture A

The Knaster–Tarski Theorem

Transfinite Ordinals

Everyone is familiar with the set ω = {0, 1, 2, . . .} of finite ordinals , also
known as the natural numbers . An essential mathematical tool is the in-
duction principle on this set, which states that if a property is true of zero
and is preserved by the successor operation, then it is true of all elements
of ω.

In theoretical computer science, we often run into inductive definitions
that take longer than ω to close, and it is useful to have an induction prin-
ciple that applies to these objects. Cantor recognized the value of such a
principle in his theory of infinite sets. Any modern account of the foun-
dations of mathematics will include a chapter on ordinals and transfinite
induction.

Unfortunately, a complete understanding of ordinals and transfinite in-
duction is impossible outside the context of set theory, because many issues
impact the very foundations of the subject. Here we only give a cursory
account of the basic facts, tools, and techniques we need.
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Set-Theoretic Definition of Ordinals

Ordinals are defined as certain sets of sets. The key facts we need about
ordinals, succinctly stated, are:

(i) There are two kinds: successors and limits.

(ii) They are well ordered.

(iii) There are a lot of them.

(iv) We can do induction on them.

We explain each of these statements in more detail below.
A set C of sets is said to be transitive if A ∈ C whenever A ∈ B and

B ∈ C. Equivalently, C is transitive if every element of C is a subset of C;
that is, C ⊆ 2C . Formally, an ordinal is defined to be a set A such that

• A is transitive; and

• all elements of A are transitive.

It follows that any element of an ordinal is an ordinal. We use α, β, γ, . . .
to refer to ordinals. The class of all ordinals is denoted Ord. It is not a set,
but a proper class.

This neat but rather obscure definition of ordinals has some far-reaching
consequences that are not at all obvious. For ordinals α, β, define α < β
if α ∈ β. The relation < is a strict partial order. As usual, there is an
associated nonstrict partial order ≤ defined by α ≤ β if α ∈ β or α = β.

It follows from the axioms of set theory that the relation < on ordinals
is a linear order. That is, if α and β are any two ordinals, then either
α < β, α = β, or α > β. This is most easily proved by induction on the
well-founded relation

(α, β) ≤ (α′, β′) def⇐⇒ α ≤ α′ and β ≤ β′.

Then every ordinal is equal to the set of all smaller ordinals (in the sense
of <). The class of ordinals is well-founded in the sense that any nonempty
set of ordinals has a least element.

If α is an ordinal, then so is α ∪ {α}. The latter is called the successor
of α and is denoted α+ 1. Also, if A is any set of ordinals, then

⋃
A is an

ordinal, and is the supremum of the ordinals in A under the relation ≤.
The smallest few ordinals are

0 def= ∅

1 def= {0} = {∅}
2 def= {0, 1} = {∅, {∅}}
3 def= {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
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The first infinite ordinal is

ω
def= {0, 1, 2, 3, . . .}.

An ordinal is called a successor ordinal if it is of the form α+1 for some
ordinal α, otherwise it is called a limit ordinal . The smallest limit ordinal
is 0 and the next smallest is ω. Of course, ω + 1 = ω ∪ {ω} is an ordinal,
so it does not stop there.

The ordinals form a proper class, thus there can be no one-to-one func-
tion Ord → A into a set A. This is what we mean above by, “There are
a lot of ordinals.” In practice, this comes up when we construct functions
f : Ord → A from Ord into a set A by induction. Such an f , regarded
as a collection of ordered pairs, is necessarily a class and not a set. We
will always be able to conclude that there exist distinct ordinals α, β with
f(α) = f(β).

Transfinite Induction

The transfinite induction principle is a method of establishing that a partic-
ular property is true of all ordinals (or of all elements of a class of objects
indexed by ordinals). It states that in order to prove that the property
is true of all ordinals, it suffices to show that the property is true of an
arbitrary ordinal α whenever it is true of all ordinals β < α. Proofs by
transfinite induction typically contain two cases, one for successor ordinals
and one for limit ordinals. The basis of the induction is often a special case
of the case for limit ordinals, because 0 = ∅ is a limit ordinal; here the
premise that the property is true of all ordinals β < α is vacuously true.

The validity of this principle ultimately follows from the well-
foundedness of the set containment relation ∈. This is an axiom of set
theory.

Zorn’s Lemma and the Axiom of Choice

Related to the ordinals and transfinite induction are the axiom of choice
and Zorn’s lemma.
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The axiom of choice states that for every set A of nonempty sets, there
exists a function f with domain A that picks an element out of each set in
A; that is, for every B ∈ A, f(B) ∈ B. Equivalently, any Cartesian product
of nonempty sets is nonempty.

Zorn’s lemma states that every set of sets closed under unions of chains
contains a ⊆ -maximal element. Here a chain is a family of sets linearly
ordered by the inclusion relation ⊆ , and to say that a set C of sets is
closed under unions of chains means that if B ⊆ C and B is a chain, then⋃
B ∈ C. An element B ∈ C is ⊆ -maximal if it is not properly included

in any B′ ∈ C.
The well-ordering principle states that every set is in one-to-one corre-

spondence with some ordinal. A set is countable if it is either finite or in
one-to-one correspondence with ω.

The axiom of choice, Zorn’s lemma, and the well-ordering principle are
equivalent to one another and independent of Zermelo–Fraenkel (ZF) set
theory in the sense that if ZF is consistent, then neither they nor their
negations can be proven from the axioms of ZF.

Complete Lattices

A complete lattice is a set U with a distinguished partial ordering relation
≤ defined on it (reflexive, antisymmetric, transitive) such that every subset
of U has a supremum or least upper bound with respect to ≤. That is, for
every subset A ⊆ U , there is an element supA ∈ U such that

(i) for all x ∈ A, x ≤ supA (supA is an upper bound for A), and

(ii) if x ≤ y for all x ∈ A, then supA ≤ y (supA is the least upper
bound).

It follows from (i) and (ii) that supA is unique. We abbreviate sup{x, y}
by x ∨ y.

Any complete lattice U has a maximum element � def= supU and a
minimum element ⊥ def= sup ∅. Also, every subset A ⊆ U has an infimum
or greatest lower bound inf A def= sup{y | ∀z ∈ A y ≤ z}. One can show
(Miscellaneous Exercise 19) that inf A is the unique element such that

(i) for all y ∈ A, inf A ≤ y (inf A is a lower bound for A), and

(ii) if x ≤ y for all y ∈ A, then x ≤ inf A (inf A is the greatest lower
bound).

A common example of a complete lattice is the powerset 2X of a set X ,
or set of all subsets of X , ordered by the subset relation ⊆ . The supremum
of a set C of subsets of X is their union

⋃
C and the infimum of C is their

intersection
⋂

C.
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Monotone, Continuous, and Finitary Operators

An operator on a complete lattice U is a function τ : U → U . Here we
introduce some special properties of such operators such as monotonicity
and closure and discuss some of their consequences. We culminate with a
general theorem due to Knaster and Tarski concerning inductive definitions.

In the special case of set-theoretic complete lattices 2X ordered by set
inclusion ⊆ , we call such an operator a set operator .

An operator τ is said to be monotone if it preserves ≤:

x ≤ y ⇒ τ(x) ≤ τ(y).

A chain in U is a subset of U totally ordered by ≤; that is, for every
x and y in the chain, either x ≤ y or y ≤ x. An operator τ is said to be
chain-continuous if for every chain A,

τ(supA) = sup
x∈A

τ(x).

For set operators τ : 2X → 2X , τ is said to be finitary if its action on
A ⊆ X depends only on finite subsets of A in the following sense:

τ(A) =
⋃

B ⊆ A

B finite

τ(B).

A set operator is finitary iff it is chain-continuous (Miscellaneous Ex-
ercise 20), and every chain-continuous operator on any complete lattice is
monotone, but not necessarily vice versa (Miscellaneous Exercise 21). In
many applications involving set operators, the operators are finitary.

Example A.1 For a binary relation R on a set V , define

τ(R) = {(a, c) | ∃b (a, b), (b, c) ∈ R}.
The function τ is a set operator on V 2; that is,

τ : 2V 2 → 2V 2
.

The operator τ is finitary, because τ(R) is determined by the action of τ
on two-element subsets of R. �

Prefixpoints and Fixpoints

A prefixpoint of an operator τ on U is an element x ∈ U such that τ(x) ≤ x.
A fixpoint of τ is an element x ∈ U such that τ(x) = x. Every operator
on U has at least one prefixpoint, namely supU . Monotone operators also
have fixpoints, as we show below.

For set operators τ : 2X → 2X , we often say that a subset A ⊆ X is
closed under τ if A is a prefixpoint of τ , that is, if τ(A) ⊆ A.
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Example A.2 By definition, a binary relation R on a set V is transitive if (a, c) ∈ R
whenever (a, b) ∈ R and (b, c) ∈ R. Equivalently, R is transitive iff it is
closed under the finitary set operator τ defined in Example A.1. �

Lemma A.3 The infimum of any set of prefixpoints of a monotone operator τ is a pre-
fixpoint of τ .

Proof. Let A be any set of prefixpoints of τ . We wish to show that inf A
is a prefixpoint of τ . For any x ∈ A, we have inf A ≤ x, therefore

τ(inf A) ≤ τ(x) ≤ x,

because τ is monotone and x is a prefixpoint. Because x ∈ A was arbitrary,
τ(inf A) ≤ inf A. �

For x ∈ U , define

PF τ (x) def= {y ∈ U | τ(y) ≤ y, x ≤ y}, (A.1)

the set of all prefixpoints of τ above x. Note that PF τ (⊥) is the set of all
prefixpoints of U , and all PF τ (x) are nonempty, because � is in there at
least.

It follows from Lemma A.3 that PF τ (⊥) forms a complete lattice under
the induced ordering ≤; however, whereas the infimum in PF τ (⊥) of any
set of prefixpoints A is inf A, the supremum is inf PF τ (supA), which is not
the same as supA in general, because supA is not necessarily a prefixpoint
(Miscellaneous Exercise 22). Thus we must be careful to say whether we
are taking suprema in U or in PF τ (⊥).

For x ∈ U , define

τ†(x) def= inf PF τ (x). (A.2)

By Lemma A.3, τ†(x) is the least prefixpoint of τ such that x ≤ τ†(x).

Lemma A.4 Any monotone operator τ has a ≤-least fixpoint.

Proof. We show that τ†(⊥) is the least fixpoint of τ in U . By Lemma
A.3, it is the least prefixpoint of τ . If it is a fixpoint, then it is the least one,
because every fixpoint is a prefixpoint. But if it were not a fixpoint, then by
monotonicity, τ(τ†(⊥)) would be a smaller prefixpoint, contradicting the
fact that τ†(⊥) is the smallest. �

Closure Operators

An operator σ on a complete lattice U is called a closure operator if it
satisfies the following three properties.
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(i) The operator σ is monotone.

(ii) For all x, x ≤ σ(x).

(iii) For all x, σ(σ(x)) = σ(x).

Because of clause (ii), fixpoints and prefixpoints coincide for closure
operators. Thus an element is closed with respect to a closure operator σ
iff it is a fixpoint of σ. As shown in Lemma A.3, the set of closed elements
of a closure operator forms a complete lattice.

Lemma A.5 For any monotone operator τ , the operator τ† defined in (A.2) is a closure
operator.

Proof. The operator τ† is monotone, because

x ≤ y ⇒ PF τ (y) ⊆ PF τ (x) ⇒ inf PF τ (x) ≤ inf PF τ (y),

where PF τ (x) is the set defined in (A.1).
Property (ii) of closure operators follows directly from the definition of

τ†. Finally, to show property (iii), because τ†(x) is a prefixpoint of τ , it
suffices to show that any prefixpoint of τ is a fixpoint of τ†. But

τ(y) ≤ y ⇔ y ∈ PF τ (y) ⇔ y = inf PF τ (y) = τ†(y).

�

Example A.6 The transitive closure of a binary relationR on a set V is the least transitive
relation containing R; that is, it is the least relation containingR and closed
under the finitary transitivity operator τ of Example A.1. The transitive
closure of R is the relation τ†(R). Thus the closure operator τ† maps an
arbitrary relation R to its transitive closure. �

Example A.7 The reflexive transitive closure of a binary relation R on a set V is the least
reflexive and transitive relation containing R; that is, it is the least rela-
tion that contains R, is closed under transitivity, and contains the identity
relation ι = {(a, a) | a ∈ V }. Note that “contains the identity relation”
just means closed under the (constant valued) monotone operation R �→ ι.
Thus the reflexive transitive closure of R is σ†(R), where σ denotes the
finitary set operator R �→ τ(R) ∪ ι. �

The Knaster–Tarski Theorem

The Knaster–Tarski theorem is a useful theorem describing how least fix-
points of monotone operators can be obtained either “from above,” as in
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the proof of Lemma A.4, or “from below,” as a limit of a chain of elements
defined by transfinite induction.

Let U be a complete lattice and let τ be a monotone operator on U .
Let τ† be the associated closure operator defined in (A.2). We show how
to attain τ†(x) starting from x and working up. The idea is to start with x
and then apply τ repeatedly until achieving closure. In most applications,
the operator τ is continuous, in which case this takes only ω iterations; but
for monotone operators in general, it can take more.

Formally, we construct by transfinite induction a chain of elements
τα(x) indexed by ordinals α:

τα+1(x) def= x ∨ τ(τα(x))

τλ(x) def= sup
α<λ

τα(x), λ a limit ordinal

τ∗(x) def= sup
α∈Ord

τα(x).

The base case is included in the case for limit ordinals:

τ0(x) = ⊥.
Intuitively, τα(x) is the set obtained by applying τ to x α times, reincluding
x at successor stages.

Lemma A.8 If α ≤ β, then τα(x) ≤ τβ(x).

Proof. We proceed by transfinite induction on α. For two successor
ordinals α+ 1 and β + 1,

τα+1(x) = x ∨ τ(τα(x)) ≤ x ∨ τ(τβ(x)) = τβ+1(x),

where the inequality follows from the induction hypothesis and the mono-
tonicity of τ . For a limit ordinal λ on the left-hand side and any ordinal β
on the right-hand side,

τλ(x) = sup
α<λ

τα(x) ≤ τβ(x),

where the inequality follows from the induction hypothesis. Finally, for a
limit ordinal λ on the right-hand side, the result is immediate from the
definition of τλ(x). �

Lemma A.8 says that the τα(x) form a chain in U . The element τ∗(x)
is the supremum of this chain over all ordinals α.

Now there must exist an ordinal κ such that τκ+1(x) = τκ(x), because
there is no one-to-one function from the class of ordinals to the set U . The



The Knaster–Tarski Theorem 43

least such κ is called the closure ordinal of τ . If κ is the closure ordinal of
τ , then τβ(x) = τκ(x) for all β > κ, therefore τ∗(x) = τκ(x).

If τ is chain-continuous, then its closure ordinal is at most ω, but not
for monotone operators in general (Miscellaneous Exercise 23).

Theorem A.9 (Knaster–Tarski) τ†(x) = τ∗(x).

Proof. First we show the forward inclusion. Let κ be the closure ordinal
of τ . Because τ†(x) is the least prefixpoint of τ above x, it suffices to show
that τ∗(x) = τκ(x) is a prefixpoint of τ . But

τ(τκ(x)) ≤ x ∨ τ(τκ(x)) = τκ+1(x) = τκ(x).

Conversely, we show by transfinite induction that for all ordinals α,
τα(x) ≤ τ†(x), therefore τ∗(x) ≤ τ†(x). For successor ordinals α+ 1,

τα+1(x) = x ∨ τ(τα(x))
≤ x ∨ τ(τ†(x)) induction hypothesis and monotonicity
≤ τ†(x) definition of τ†.

For limit ordinals λ, τα(x) ≤ τ†(x) for all α < λ by the induction hypoth-
esis; therefore

τλ(x) = sup
α<λ

τα(x) ≤ τ†(x).

�


