
CS 6110
Advanced Programming Languages

Andrew Myers

Cornell University

Lecture 38
More about object-oriented languages

1 May 09

2

Untyped object calculus
Syntax

e ::= x | o | e.l | e + {x.l = e}

v ::= {xi.li = ei
i∈1..n} (n≥0)

Reductions (o = {xi.li = ei
i∈1..n} (n≥0))

o.li → ei {o/xi}

o + {x.l= e} → {x.l = e, xi.li = ei
∀li ∈ {l1,...,ln}- {l}})

• Can encode untyped lambda calculus

• Can encode classes as objects

3

o + {x.lj= e } → {x.lj = e, xi.li = ei
∀i∈(1..n)-{j}})

o.li → ei{o/xi}

Typed object calculus
e ::= … | x | e.l | o | e + {x.l = e}

v, o ::= {xi.li = ei
i∈1..n} (n≥0)

τ ::= … | {li:τi
i∈1..n}

(τo  {li:τi
∀i∈1..n})

Γ, xi : τo ei : τi
(∀i∈1..n)

Γ o : τo

Γe : τo

Γ e.li : τi

Γeo : τo Γ, x:τo e : τj

Γ eo + {x.lj = e} : τo

object type

(o  {xi.li = ei
∀i∈1..n})

(where j∈1..n)

4

Implementing classes (typed)
TPoint = µΤ.{x: int, y: int, movex: int→T}
TColoredPoint = µΤ.{x: int, y: int, c: color, movex: int→T, draw: 1→1} ≤ TPoint
Point = {
 cl.init : TPoint*int*int→TPoint = λt: TPoint, x:int, y:int .

t + {p.x = x, p.y = y}
cl.new : int*int→TPoint = λx:int, y:int . cl.init(PointTemplate, x, y)

}
PointTemplate: TPoint = { p.x: int = p.x, y: int = p.y,

 p.movex = λd:int. p + {q.x = p.x + d} }
ColoredPoint = {

cl.init : TColoredPoint*color→TColoredPoint = λt: TColoredPoint, c: color .
Point.init(t) + { p.color = c },

cl.new : color→TColoredPoint = λc:color. cl.init(CPTemplate, c),
}
CPTemplate : TColoredPoint = PointTemplate + {

p.c: color = p.c,
p.movex = λd:int. p + {q.x = p.x + d, q.c = p.c},
p.draw = λu:1. … }

Point
“class”

Need masked
types here!

ColoredPoint
“class”

5

Subtyping vs. inheritance
• Inheritance: an operation on code

– A inherits B = “Code A is just like code B except for
the following changes and additions.” A mechanism
for code reuse.

– Semantics: A is a distinct copy of B
– Implementation: code of B reused where possible

without breaking copying semantics

• Subtyping: a relation on types
– A ≤ B : “A value of type A can be used wherever a

value of type B is expected”

6

Inheritance w/o subtyping
• Java’s “class A extends B”

– A inherits B and A ≤ B

• Can we have A inherits B without A ≤ B?
– Yes: C++ “private” inheritance, Modula-3 type

revelations

• Should we have A inherits B without A ≤ B?
– If we want code reuse without subtyping.
– Behavioral subtyping: A value of type A behaves

like a value of type B (satisfies spec of B, not just
types)

– Good uses of subtyping are behavioral subtyping.
– Good uses of inheritance need not be.

7

Specialization interface
• C++, Java: methods may be marked

“final” or “nonvirtual” -- cannot be
overridden by subclasses

• Overridable “virtual” methods are a
specialization interface : contract
between class and its subclass.
– Abstracts with respect to superclasses being

extended rather than code being called

– Controls exposure to subclasses

– Why writing good OO libraries is hard.

8

Multimethods
• Objects provide possible extensibility at each

method invocation o.m(a,b,c)
– Different class for “o” permits different code to be

substituted after the fact

– Implementation: Object dispatch selects correct code
to run.

– Different classes for a, b, c have no effect on choice of
code: not the method receiver

• Multimethods/generic functions (CLOS, Dylan,
Cecil, MultiJava) : dispatch on all arguments.

9

A multimethod on Shape
class Shape {

boolean intersects(Shape s);
}
Class Triangle extends Shape {

boolean intersects(Shape s) {
if (s instanceof Box) … T/B code
if (s instanceof Triangle) … T/T code
if (s instanceof Circle) … T/C code

Problem: not extensible

Shape

Box Triangle

Circle

10

Multimethods

intersects(Box b, Triangle t) { T/B code }
intersects(Triangle t1, Triangle t2) { T/T code }
intersects(Circle c, Triangle t) { T/C code }
Intersects(Shape s, Box b) { S/B code }
… more extensible!

But…
• Semantics are tricky

– scope of generic function?
– encapsulation boundary?
– ambiguities!

• Modular type-checking problematic -- whole program
needed to see ambiguities.

Shape

Shape

Box

Box

✓ ✓

✓

11

Predicate dispatch
• Multimethods let o.m(a,b,c) dispatch on

one property of o, a, b, c (runtime class).

• Predicate dispatch: dispatch on general
predicates over o, a, b, c.
– Allows selective overriding of methods

– Exposes assumptions to compiler (use
automatic theorem prover to reason about
exhaustiveness)

– Multimethod dispatch is a special case

12

Mixins
• Code is expensive and slow to produce. Reuse?

• Inheritance, polymorphism, functors are
abstraction mechanisms, supporting modular
code reuse.
– Also want extensibility

• Mixin: mechanism that allows functionality to
be “mixed in” to existing class or code base
– Multimethods: some support

– Multiple inheritance:
class A extends A, Mixin

A Mixin

A

13

Multiple inheritance
• Multiple “interface inheritance” is mostly-

harmless subtyping via intersection types
• Multiple class inheritance ⇒ name conflicts
• Diff. identity, same name:

– Static error
– Method renaming (underlying identity)
– Can hide method at subtype ((A)o).f(D)

• Same identity, diff. value: real conflict
• Static error: force override in D
• Prevent invocation at D or cast to “ambiguous superclass”

• Repeated superclasses:
how many copies?
– C++: 1 if “virtual base class”
– …but impl. more complex

A { f(D); } B { f(E); }

C ext A, B { }

A { f(); }

C { f() {…} }

D ext B, C { }

B { f() {…} }

“diamond inheritance pattern”’

14

Parametric mixins
class MixinT extends I extends T {

new functionality
}

• Applying mixin to class C produces a new
subclass of C! (not supported by Java 1.5)

• Problem with parametric reuse (also: ML
functors): parameters proliferate

A

B

C D

A[b,c]
B[c,d]
C[b,d]

…too much planning, clutter
ahead of time!

15

Family inheritance mechanisms
• Ordinary inheritance inherits fields, methods

– Allows per-class extension of behavior,
representation

• Sometimes want to inherit a whole body of code
while preserving class relationships

• Family inheritance mechanisms support this
(gBeta, Jx, J&) -- virtual classes, nested inheritance,…

class A {
class B {

void g() { f(); }
void f(C x);

}
class C extends B {

…
}

}

class A extends A {
class B {

int x;
}
class C {

void f() { this.x = 0; }
}

}

B

C B

C

A

A

A.BA.B (consider A.B.f)

16

Nested inheritance
• J& extends Java with nested inheritance :

a type-safe family inheritance mechanism
– Dependent classes: A a = …; a.B b = …
– Works with static nested classes,

 packages
– Example: composing compilers

(package-level mixins)
B

C B

C

A

Aclass/package A {
 class B {

C c = new C();
 }
 class C {…}
}

A.C!

17

Some things we didn’t cover
• Concurrency mechanisms and reasoning

techniques
• Abstract interpretation
• Information flow types
• Functors
• Monads
• Intersection/union types
• Singleton types
• Generalized ADTs
• Logic programming
• Polarity for co/contravariant subtyping
• Mechanized proof techniques

18

What we did have time for
• Thinking about programs and languages

formally and precisely
– Operational semantics

– Axiomatic semantics

– Denotational semantics (translation)

– Type systems

• Studied language features in isolation

• Learned how to prove properties of languages
and programs

• Useful?

19

Final issues
• Final is Monday, May 11

9AM-11:30AM in 206 Hollister Hall
– Open book

• Related courses and seminars:
CS 4120, [CS 6120], [CS 7110], PLDG/LCS

