
CS 6110 Lecture 34 Solving Domain Equations 22 April 2009
Lecturer: Andrew Myers

To develop a denotational semantics for a language with recursive types, or to give a denotational se-
mantics for the untyped lambda calculus, it is necessary to find domains that are solutions to domain
equations. Given some domain constructor F(D), we need to be able to solve for the domain D satisfying
the isomorphism:

D ∼= F(D)

We have seen some strategies for solving such equations earlier. In particular, inductively defined sets
also satisfy a similar the equation, with the rule operator taking the role of F . However, inductively defined
sets do not generate complete partial orders; they only produce the elements that can be constructed by
some finite number of applications of F . This means that we cannot use them in any semantics where it is
necessary to take a fixed point over D.

While it would be nice to be able to solve this equation as an equality, an isomorphism between the
domains is sufficient.

If we interpret a recursive type µX.τ as a domain D, then F(D) corresponds to the unfolding of the
type, τ{µX.τ/X}. The isomorphism connecting D and F(D) therefore corresponds to the fold and unfold
operations:

fold : τ{µX.τ/X} → µX.τ

unfold : µX.τ → τ{µX.τ/X}

We are looking for an isomorphism witnessed by a continuous bijection up and down = up−1, so that we
can use up to model fold and down to model unfold:

up : [F(D)→ D]

down : [D → F(D)]

The isomorphism between the domains must preserve the ordering structure of the elements. That is, it
should be homomorphic with respect to the ordering relation v:

d v d′ ⇒ up(d) v up(d′)

d v d′ ⇒ down(d) v down(d′)

1 Approximating the solution

We have already seen that for other recursive definitions x = f(x), we can find a solution by taking the
limit of the sequence fn(⊥), where ⊥ is some initial element. We can apply the same strategy to solving
domain equations. We start from some initial domain D0, and apply F to obtain a sequence of domains
F(D0),F(F(D0)),F(F(F(D0))), . . . where each domain in the sequence is a better approximation to the
desired solution, yet preserves and extends the structure of the earlier approximations.

2 An ordering on domains

Therefore we need a way to relate two domains. We write D @∼E to indicate that D is a simplified version
of E, to within some isomorphism. Our goal is to have

F(D0) @∼F(F(D0))@∼F(F(F(D0)))@∼ . . .

and then to use these approximations to take a limit of the sequence, much as we did in previous fixed-point
constructions.

1

D E

p

e

Figure 1: Embedding a domain D into a domain E

⊥ ⊥

⎣⊥⎦

⊥

⎣⊥⎦

⎣⊥⎦

⊥

⎣⊥⎦

⎣⊥⎦

⎣⊥⎦3

22

. . .

. . .

. . .

. . .

. . .

D0 D1 D2 D3 . . .

Figure 2: Successive approximations for D = D⊥

Two domains D and E are related if there exists a way of embedding D into E while preserving its
structure. We can characterize this embedding in terms of a pair of functions: an embedding function
e : [D → E] and a projection function p : [E → D]. These functions must be continuous, and as depicted in
Figure 1, they must also agree in the following sense: for all elements d ∈ D and d′ ∈ E, p(e(d)) = d and
e(p(d′)) v d′. That is, on corresponding elements of D and E, the functions e and p act as inverses; on new
elements in E, the projection function maps them to an element of D whose corresponding E element is
related. Together, these functions are called an embedding-projection pair (ep-pair) (or just projection pair).

3 A simple domain equation

For example, consider the domain equation D = D⊥. The function F(D) maps each element d ∈ D to bdc,
and introduces a new element ⊥. This is essentially the domain equation for a lazy infinite stream of unit
values, because D⊥ ∼= (U×D)⊥. So assuming that the solution to the equation is a CPO (and it is), we can
use the solution to give meaning to expressions like rec x.(null, x), where we need to take a fixed point over
D.

There are two obvious ways to define an embedding-projection pair relating the domains D and D⊥,
leading to two different solutions to the domain equation. The one we’ll explore is shown in Figure 2. In the
figure, leftward arrows represent p. Rightward arrows represent e, and implicitly, a p arrow in the opposite
direction.

Given a sequence of domains D0 @∼D1 @∼D2, . . . , there is a corresponding sequence of embedding and
projection functions en : Dn → Dn+1 and pn : Dn+1 → D. The diagram of Figure 2 corresponds to the
following definition of these functions by induction on n:

2

en(⊥) = ⊥
en(bdn−1c) = ben−1(dn−1)c (where n > 0)

pn(⊥) = ⊥
p0(b⊥c) = ⊥

pn(bdnc) = bpn−1(dn)c (where n > 0)

This may seem like an needlessly complex way to define en and pn, but it is done this way to show the
approach that is used for more complex domain equations. Given these definitions, we easily show by
induction that en and pn form a valid ep-pair.

The definition is simplified if given a function f : [D → E], we define the notation f⊥ : D⊥ → E⊥ as
follows:

f⊥ = ⊥
f⊥(bxc) = bf(x)c

Then en+1 = e⊥n and pn+1 = p⊥n .

4 A solution to the domain equation

We are now ready to define the elements of the solution domain D. It is the projective limit (or inverse limit) of
the domains Dn: the infinite commuting tuples 〈d0, d1, d2, . . .〉, where for all n ≥ 0, dn ∈ Dn, and further, dn =
pn(dn+1). Therefore, given an element dn, it is possible to apply the projection functions pn−1, pn−2, . . . , p0

to obtain all the previous tuple elements. For brevity, we write these tuples in a comprehension form: 〈dn〉n∈N
or even simply 〈dn〉.

Since each of the Dn is a CPO, the the elements of D form a CPO when ordered pointwise: 〈dn〉 v 〈d′n〉
iff ∀n. dn vDn

d′n, and 〈dn〉 t 〈d′n〉 = 〈dn t d′n〉.
What are the elements of D? There is a lowest element 〈⊥,⊥,⊥, . . .〉 (call it x0), and successive elements

x1 = 〈⊥, b⊥c, b⊥c, . . .〉, x2 = 〈⊥, b⊥c, bb⊥cc, bb⊥cc, . . .〉, and so on. Finally, there is the supremum of all
the other elements, x∞ = 〈⊥, b⊥c, bb⊥cc, bbb⊥ccc, . . .〉, corresponding to the diagonal in Figure 2. This last
element makes the partial order complete.

It remains to show that there is an homomorphism between D and D⊥. The isomorphism is as follows,
clearly preserving the relationship among mapped elements:

x0 ←→ ⊥
x1 ←→ bx0c
x2 ←→ bx1c

. . .

x∞ ←→ bx∞c

We can define the isomorphism more formally in terms of the continuous function up : D⊥ → D, which
represents lifting of the entire tuple as lifting on each of its elements:

up(b〈dn〉n∈Nc) = 〈pn(bdnc)〉n∈N

up(⊥) = x0 = 〈⊥,⊥,⊥, . . .〉

The inverse function is down : D → D⊥:

3

down(〈⊥,⊥,⊥, . . .〉) = ⊥
down(〈⊥, bd0c, bd1c, bd2c〉) = b〈d0, d1, d2, . . .〉c

These functions are clearly inverses and homomorphisms.

5 A related example

Suppose we want to represent infinite lists of natural numbers. We might write the domain equation D =
(N × D)⊥. This would allow us to give a semantics to the result of the following code, an infinite list of
prime numbers, assuming that pairs in our language are lazy:

letrec primes_from = λn:nat. if is_prime(n)
then (n, primes_from(n+1))
else primes_from(n+1)

in
primes_from(2)

Using the domain equation above, we’d expect this code to return the result (2, (3, (5, . . .))), with the
denotation b〈2, b〈3, b〈5, . . .〉c〉c〉c. To obtain this denotation, we define pn and en as follows (note m ∈ N):

en(⊥) = ⊥
en(b〈m, dn−1〉c) = b〈m, en−1(dn−1)〉c (where n > 0)

pn(⊥) = p0(bm,⊥c) = ⊥
pn(b〈m, dn〉c) = b〈m, pn−1(dn)〉c

Therefore, the representation of the list of primes as commuting tuples is:

〈⊥, b〈2,⊥〉c, b〈2, b〈3,⊥〉cc, b〈2, b〈3, b〈5,⊥c〉cc, . . .〉

The functions up and down are defined similarly to the previous example:

up(⊥) = 〈⊥〉n∈N

up(b〈m, dn〉c) = 〈pn(b〈m, dn〉c)〉

down(〈⊥〉n∈N) = ⊥
down(〈⊥, b〈m, d0〉c, b〈m, d1〉c, . . .〉) = b〈m, 〈d0, d1, . . .〉〉c

6 Scott’s D∞ construction

Scott showed that this general approach could be followed to obtain the first nontrivial solution to the
equation D = [D → D], where [D → D] represents the set of all continuous functions from D to D. We start
from some pointed domain D0 containing at least two elements. For example, we could choose D0 = {⊥, ∗},
with ⊥ v ∗. Then apply F(D) = [D → D] to obtain domains D1 = [D0 → D0], D2 = [D1 → D1], and so
on. We define en : Dn → Dn+1 and pn : Dn+1 → Dn inductively, as before:

e0(d0) = λy ∈ D0 . d0 (where d0 ∈ D0)
p0(d1) = d1(⊥D0) (where d1 ∈ D1)

en(dn) = en−1 ◦ dn ◦ pn−1 (where dn ∈ Dn, n > 0)
pn(dn+1) = pn−1 ◦ dn+1 ◦ en−1 (where dn+1 ∈ Dn+1, n > 0)

4

To understand the definition of en and pn, it helps to consider the following diagram:

Dn

Dn

dn+1

Dn-1
pn-1

Dn-1 en-1

dn

pn

en

Dn+1

Dn+1

dn+2

The first three domains constructed by this process (D0, D1, D2) look like this:

*

D0

0 = ⊥⊥⊥

1 = ⊥*

2 = **

D1 D2

000

001

002 011

111012

112022

122

222

The domains grow very rapidly after this point; D3 contains 416416 elements, thought this is a small fraction
of the 1010 elements of DD2

2 !
Notice that in D1 = [D0 → D0] there are only three possible elements. This is because the function

{⊥ 7→ ∗, ∗ 7→ ⊥} (which would be represented in the figure as ∗⊥) is not monotonic (or continuous). This
would be a function that terminates on a divergent argument and diverges on a value, which is clearly not
computable. As we progress farther up the chain of domain approximations, more and more of the functions
in Dn → Dn are not continuous, because they are not computable. This is why there is no cardinality
paradox.

We define D∞ as the projective limit of the Dn, as before, so an element of D∞ is an infinite tuple of
functions.

We define down : D∞ → [D∞ → D∞] by mapping an element of d ∈ D∞ to a function f that works on
each element of Dn. In other words, we need a way to treat a tuple of functions as a function that operates
on tuples. Let x = 〈xn〉 be an element of D∞. We define y = 〈ym〉 = f(x) by applying dn+1 to xn for all n,
then joining all the results and projecting them down to each ym.

y0 = d1(x0) t p0(d2(x1)) t · · · t (p0 ◦ p1 ◦ · · · ◦ pn)(dn+2(xn+1)) t . . .

y1 = d2(x1) t p1(d3(x2)) t · · · t (p1 ◦ p2 ◦ · · · ◦ pn)(dn+2(xn+1)) t . . .

. . .

ym = dm+1(xm) t pm(dm+2(xm+1)) t · · · t (pm ◦ pm+1 ◦ · · · ◦ pm+k)(dm+k+2(xm+k+1)) t . . .

. . .

Using down, we can define up, which constructs the tuple of approximations of f ∈ D∞ → D∞ at every
Dn, by projecting the action of f down to Dn.

up(f) = 〈dn〉
d0 = f(⊥D0)

dn+1 = p∞→n ◦ f ◦ en→∞

5

Here, p∞→n is a projection from D∞ to Dn, and en→∞ is the inverse embedding, defined inductively on
n as follows:

e0→∞(d0) = 〈d0, e0(d0), (e1 ◦ e0)(d0), . . .〉
p∞→0(〈dn〉) = d0

en+1→∞(dn+1) = en→∞ ◦ dn+1 ◦ p∞→n

p∞→n+1(d) = p∞→n ◦ down(d) ◦ en→∞

Dn

Dn

dn+1

Dn-1
pn-1

Dn-1 en-1

pn

en

Dn+1

Dn+1

D∞...

... D∞

p∞→n

en→∞

down(d)

7 Semantics of the untyped lambda calculus

With D∞, we can give an extensional semantics for the untyped lambda calculus. It looks familiar except
for the use of up and down. We have a naming environment ρ ∈ Var → D∞ and a semantic function such
that [[e]]ρ ∈ D∞:

[[x]]ρ = ρ(x)
[[e0 e1]]ρ = down([[e0]]ρ) [[e1]]ρ
[[λx. e]]ρ = up(λy ∈ D∞ . [[e]]ρ[x 7→ y])

This semantics doesn’t distinguish between nontermination and termination, which is a bit unsatisfactory.
If we want to more faithfully model the CBV lambda calculus, we can use the domain equation D ∼= [D → D⊥]
instead (for CBN, we’d use D ∼= [D⊥ → D⊥]). The equations are solved similarly to D ∼= [D → D]. In the
CBV case, we can start with D0 = {∗} and modify the definitions for en and pn as follows:

e0(∗) = λy ∈ D0 .⊥
p0(d1) = {∗} (where d1 ∈ D1)

en(dn) = e⊥n−1 ◦ dn ◦ pn−1 (where dn ∈ Dn, n > 0)

pn(dn+1) = p⊥n−1 ◦ dn+1 ◦ en−1 (where dn+1 ∈ Dn+1, n > 0)

The first three approximations to the solution are shown in Figure 3.
The rest follows directly. The CBV semantics then have [[e]] : (Var ⇀ D)→ D⊥:

[[x]]ρ = bρ(x)c
[[e0 e1]]ρ = let f ∈ D = [[e0]]ρ in let v ∈ D = [[e1]]ρ in down(f)(v)
[[λx. e]]ρ = bup(λy ∈ D . [[e]]ρ[x 7→ y])c

6

D0 D1 D2

* * ⊥ = 0

* ∗ = 1

⊥⊥

⊥0

⊥1

01

00

11

Figure 3: Approximations to a domain equation solution

8 Other equations

Can we find solutions to domain equations, in general? It turns out that a solution exists if we have a set
of equations of the form D1 = F1(D1, . . . Dn), . . . , Dn = Fn(D1, . . . Dn), where each of the Fi is constructed
using compositions of the following domain constructions: D⊥, D×E,D + E,D → E⊥. (This is a sufficient
but not necessary condition). Winskel shows in Chapter 12 one way to build solutions using information
systems. Thus, we can construct complex, recursive domain equations and be sure that we have a well-defined
mathematical basis for denotational semantics.

7

