1 Type schemas

We saw last time that we could describe type inference by writing typing rules that introduce explicit type variables T to solve for:

\[
\frac{\Gamma, x:\tau \vdash x:\tau}{\Gamma \vdash x:\tau} \quad \frac{\Gamma \vdash b:B}{\Gamma \vdash b:B} \\
\frac{\Gamma \vdash e_0:\tau_0 \quad \Gamma \vdash e_1:\tau_1 \quad \tau_0 = \tau_1 \rightarrow T}{\Gamma \vdash e_0 \ e_1 : T} \quad \frac{\Gamma, x:T \vdash e : \tau' \quad \Gamma \vdash \lambda x. e : T \rightarrow \tau'}{\Gamma \vdash \lambda x. e : T \rightarrow \tau'} \\
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x:\tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \text{let} \ x = e_1 \ \text{in} \ e_2} \quad \frac{\Gamma, x:T_1, y:T_1 \rightarrow T_2 \vdash e : \tau' \quad \tau' = T_2}{\Gamma \vdash \text{rec} \ y. \lambda x. e : T_1 \rightarrow T_2}
\]

This simple type inference mechanism does not result in as much polymorphism\(^1\) as we would like. For example, consider a program that binds a variable f to the identity function, then applies it to both an int and a bool:

\[
\text{let } f = \lambda x. x \\
\text{if } (f \ \text{true}) \ \text{then } (f \ 3) \ \text{else } (f \ 4)
\]

The type system above will find that the function f has some type $T \rightarrow T$, which means that it can act as if it had this type for any T. However, when the type checker encounters the application to true, it decides $T = \text{bool}$ first and says that the function is of type \text{bool} \rightarrow \text{bool}. It then gives a unification error when it sees the int parameters 3 and 4. We would like f to be polymorphic, having type \text{bool} \rightarrow \text{bool} when applied to a \text{bool} parameter and type \text{int} \rightarrow \text{int} when applied to an \text{int} parameter.

The various versions of ML can do this. The trick is to bind variables like f not to types, but rather to \text{type schemas}. A type schema σ is a pattern for a type, which can mention type parameters α:

\[
\sigma ::= \forall \alpha_1, \ldots, \alpha_n. \tau \quad (n \geq 0)
\]

The idea is that if a variable has a type schema mentioning type parameters $\alpha_1, \ldots, \alpha_n$, it is bound to a term that can act as though it has any type that looks like τ with the parameters α_i replaced by arbitrary types τ_1, \ldots, τ_n. For example, we give the variable f the type schema $\forall \alpha. \alpha \rightarrow \alpha$, and the type of the K combinator $\lambda xy. x$ (a.k.a. \text{FALSE}) is $\forall \alpha. \forall \beta. \alpha \rightarrow \beta \rightarrow \alpha$.

1.1 Inferring type schemas

To incorporate type schemas into the type system, we extend Γ to bind variables to type schemas:

\[
\Gamma = x_1:\sigma_1, \ldots, x_n:\sigma_n
\]

Then the typing rule for variables \textit{instantiates} the variable’s type by replacing type parameters α with types. To make this work with type inference, these types are fresh type variables to be solved for:

\[
\Gamma, x:\forall \alpha_1, \ldots, \alpha_n. \tau \vdash x : \tau\{T_1/\alpha_1, \ldots, T_n/\alpha_n\} \quad \text{(instantiation)}
\]

We extend the typing rule for let to correspondingly generate type schemas by generalizing over type parameters that appear only in the type of e_1 (that is, do not appear in Γ):

\(^1\)Greek for “many shapes”
\[
\frac{e_1 : \tau_1 \quad \Gamma, x : \forall \alpha_1, \ldots, \alpha_n. \tau_1 \vdash e_2 : \tau_2 \quad \alpha_i \notin \text{FTV}(\Gamma) \quad i \in 1..n}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2} \quad \text{(generalization)}
\]

How are the parameters \(\alpha_i\) chosen? The algorithm is to type-check \(e_1\) using type variables as above. However, once the type \(\tau_1\) is found, and unification is used to solve all equations in the derivation of \(\Gamma \vdash e_1 : \tau_1\), any unsolved type variables \(T\) that are not constrained by appearing elsewhere in the program could be replaced by any type. Therefore, we replace each such type variable in \(\tau_1\) with a corresponding type parameter \(\alpha\). While it doesn’t in principle hurt to have extra type parameters, the usual approach is to generate a type parameter for each unsolved \(T\) that appears in \(\tau_1\) but not in \(\Gamma\).

1.2 Example

Here is a derivation exposing the polymorphic type of \(K\) in this system:

\[
\frac{\vdash x : \alpha, y : \beta \vdash x : \alpha}{\vdash x : \alpha \vdash \lambda y. x : \beta \to \alpha} \quad \vdash \lambda x. \lambda y. x : \alpha \to \beta \to \alpha \quad \vdash k : \forall \alpha, \beta. \alpha \to \beta \to \alpha \vdash e_2 : \tau_2} \quad \vdash \text{let } k = \lambda x. \lambda y. x \text{ in } e_2 : \tau_2
\]

The type inference algorithm would proceed by computing a type \(T_1 \to T_2 \to T_1\) for the variable \(k\). Because neither \(T_1\) nor \(T_2\) would be mentioned in the typing context, it would replace them with the type variables \(\alpha\) and \(\beta\) and give \(k\) the type schema \(\forall \alpha. \forall \beta. \alpha \to \beta \to \alpha\) when type-checking \(e_2\).

1.3 Limitations of let-polymorphism

The type systems of ML and Haskell are based on let-polymorphism. We previously considered \(\text{let } x = e_1 \text{ in } e_2\) to be equivalent to \((\lambda x. e_2) e_1\), but in SML, the former may be typable in some cases when the latter is not, e.g.:

- let val f = fn x ⇒ x in if (f true) then (f 3) else (f 4) end;
val it = 3 : int
- (fn f ⇒ if (f true) then (f 3) else (f 4)) (fn x ⇒ x);

stdIn:17.27-17.32 Error: operator and operand don’t agree [literal]
operator domain: bool
operand: int
in expression:
 f 3

stdIn:17.38-17.43 Error: operator and operand don’t agree [literal]
operator domain: bool
operand: int
in expression:
 f 4

2 System F

If we consider type schemas to be regular types, we get the language System F, introduced by Girard in 1971. This lets us pass polymorphic terms uninstantiated to functions.

In the Church-style simply-typed \(\lambda\)-calculus, we annotated binding occurrences of variables with their types. The corresponding version of the polymorphic \(\lambda\)-calculus is called System F. Here we explicitly abstract terms with respect to types and explicitly instantiate by applying an abstracted term to a type. We augment the syntax with new terms and types:

\[
e ::= \cdots \mid \Lambda \alpha. e \mid e[\tau] \quad \tau ::= b \mid \tau_1 \to \tau_2 \mid \alpha \mid \forall \alpha. \tau
\]
where b are the base types (e.g., \texttt{int} and \texttt{bool}). The new terms are \textit{type abstraction} and \textit{type application}, respectively. Operationally, we have

$$(\Lambda \alpha. e)[\tau] \rightarrow e\{\tau/\alpha\}.$$

This just gives the rule for instantiating a type schema. Since these reductions only affects the types, they can be performed at compile time.

The typing rules for these constructs need a notion of well-formed type. We introduce a new environment Δ that maps type variables to their \textit{kinds} (for now, there is only one kind: \texttt{type}). So Δ is a partial function with finite domain mapping types to \{\texttt{type}\}. Since the range is only a singleton, all Δ does for right now is to specify a set of types, namely $\text{dom}(\Delta)$ (it will get more complicated later). As before, we use the notation $\Delta, \alpha : \texttt{type}$ for the partial function $\Delta[\texttt{type}/\alpha]$. For now, we just abbreviate this by Δ, α.

We have two classes of type judgments:

$\Delta \vdash \tau : \texttt{type}$ \hspace{1cm} $\Delta; \Gamma \vdash e : \tau$

For now, we just abbreviate the former by $\Delta \vdash \tau$. These judgments just determine when τ is well-formed under the assumptions Δ. The typing rules for this class of judgments are:

$\frac{\Delta, \alpha \vdash \alpha}{\Delta \vdash \alpha}$ \hspace{1cm} $\frac{\Delta \vdash b}{\Delta \vdash b}$ \hspace{1cm} $\frac{\Delta \vdash \sigma \quad \Delta \vdash \tau}{\Delta \vdash \sigma \rightarrow \tau}$ \hspace{1cm} $\frac{\Delta, \alpha \vdash \tau}{\Delta \vdash \forall \alpha. \tau}$

Right now, all these rules do is use Δ to keep track of free type variables. One can show that $\Delta \vdash \tau$ iff $FV(\tau) \subseteq \text{dom}(\Delta)$.

The typing rules for the second class of judgments are:

$\frac{\Delta \vdash \tau}{\Delta; \Gamma, x : \tau \vdash x : \tau}$ \hspace{1cm} $\frac{\Delta; \Gamma \vdash e_0 : \sigma \rightarrow \tau \quad \Delta; \Gamma \vdash e_1 : \sigma}{\Delta; \Gamma \vdash (e_0, e_1) : \tau}$ \hspace{1cm} $\frac{\Delta; \Gamma, x : \sigma \vdash e : \tau \quad \Delta \vdash \sigma}{\Delta; \Gamma \vdash (\lambda x : \sigma. e) : \sigma \rightarrow \tau}$

$\frac{\Delta; \Gamma \vdash e : \forall \alpha. \tau \quad \Delta \vdash \sigma}{\Delta; \Gamma \vdash (e \sigma) : \tau\{\sigma/\alpha\}}$ \hspace{1cm} $\frac{\Delta, \alpha; \Gamma \vdash e : \tau \quad \alpha \notin FV(\Gamma)}{\Delta; \Gamma \vdash (\Lambda \alpha. e) : \forall \alpha. \tau}$

One can show that if $\Delta; \Gamma \vdash e : \tau$ is derivable, then τ and all types occurring in annotations in e are well-formed. In particular, $\vdash e : \tau$ only if e is a closed term and τ is a closed type, and all type annotations in e are closed types.