CS 6110 Lecture 27 Subtype Polymorphism 6 April 2009

Lecturer: Andrew Myers

1 Introduction

In this lecture, we make an attempt to extend the typed A-calculus for it to support more advanced data
structures such as records and references. In particular, we explore the concept of subtyping in detail, which
is one of the key features of object-oriented languages.

Subtyping was first introduced in SIMULA, considered the first object-oriented programming language.
Its inventors Ole-Johan Dahl and Kristen Nygaard later went on to win the Turing Award for their contri-
bution to the field of object-oriented programming. SIMULA introduced a number of innovative features
that have become the mainstay of modern OO languages including objects, subtyping and inheritance.

The concept of subtyping is closely tied to those of inheritance and polymorphism and offers a formal
way of studying them. It is best illustrated by means of an example:

Person

Student Staff

Graduate Undergrad

TA RA

Figure 1: A Subtype Hierarchy

This is an example of a subtype hierarchy, which describes the relationship between different entities.
In this case, the Student and Staff types are both subtypes of the Person type (alternately, Person is the
supertype of Student and Staff). Similarly, TA is a subtype of the Student and Person types and so on. A
subtype relationship can also be thought of in terms of subsets. For example, this example can be visualized
with the help of the following Venn diagram:

The < symbol is typically used to denote the subtype relationship. Thus, Staff < Person, RA < Student
and so on.!

1.1 Subtyping as inclusion

The statement 7 < 79 means that a 7 can be used wherever a 75 is expected. One way to think of this is
in terms of sets of values corresponding to these types. Any value of type 7 must also be a value of type
To. Assuming a type interpretation 7 [r] that gives the set of elements, we understand 7, < 75 to mean
T[[Tl]] Q T[[TQH.

1.2 Subtyping as coercion

Another view of subtyping is when a value of the type 75 is expected and a value of 7 is supplied instead,
the compiler or run-time system is able to automatically coerce the supplied value to the correct type. Given

1Some people, like Pierce, use the symbol <:, but in this class, we will stick to <.



Person

Undergrad 3

Student
Graduate

Figure 2: Subtypes as Subsets

a subtyping relationship 7, < 79, we can define a coercion function ©(1; < 72) : 71 — 72 that shows how to
do this coercion. A language that supports subtyping can then be translated via coercion to a language that
does not have subtyping.

2 Subtyping Rules

The informal interpretation of this subtype relation 71 < 75 is that anything of type 7; can be used in a
context that expects something of type 7. This is formalized as the subsumption rule:

I'te:7m Fr <7
I'e:7

(SuB)

Notice that the right premise in this rule is actually a side condition, relying on a separate, new judgement
of the form F 71 < 75. We still have to define this judgement.
There are two general rules regarding the subtyping relationship:

— (REFL)

T1<T2 T2<T3
71 <73

(TRANS)

Since the < relation is both reflexive and transitive, it is a pre-order. In most cases, anti-symmetry holds
as well, making the subtyping relation a partial order, but this is not always true. The subtype relationships
governing the 1 and 0 types are interesting:

e The unit type 1: Being the top type, any type can be treated as a subtype of 1. If a context expects
something of type 1, it can never be disappointed by a different value. Therefore, V7. 7 < 1. In Java,
this is much like the type void that is the type of statements and of methods that return no value.

The coercion function for this subtyping relationship is trivial:

Ofr < 1] = Az:7.null

e We can also introduce a bottom type 0 that is a universal subtype. This type can be accepted by
any context in lieu of any other type: i.e., V7. 0 < 7. This type is useful for describing the result of
a computation that never produces a value. For example, it never terminates, or it transfers control
somewhere else rather than producing a value.



The type hierarchy thus looks as shown in Figure 3.
1

Figure 3: Type Hierarchy for Typed Lambda Calculus

3 Subtyping Rules for Product and Sum Types

The subtyping rules for product and sum types are quite intuitive:

<t T<1 n<T1 T2<T)

i1 <T{ %74 T1+T2 < T+ T

These rules showing that subtyping on products and sum is covariant: the direction of subtyping in the
arguments to the type constructor (+, ) is same as the direction on the output of the type. In general, we
say that a type constructor F' has subtyping that is covariant in one of its arguments 7 if whenever 7 < 7/,
it is the case that F(7) < F(7').

Coercion functions for these rules are as follows. The definition of © is well-typed by induction on the
derivation of the subtyping relationship.

O(ry 1o <1 *T3) = Ax:T1 x T2. (O(11 < 711) (#1 2),0(12 < 73) (#2 7))
O+ 12 <7 +74) = Ax:71 + T2.case x of (y1:71).inl (O(11 < 77) y1) | (y2:72).inr (O(12 < 75) y2)
4 Function Subtyping

Based on the subtyping rules we have encountered up to this point, our first impulse is perhaps to write
down something like the following to describe the subtyping relation for functions:

<71 To<T

, - (BROKENFUNSUB)
T — T < T — Ty

However, this is incorrect. To see why, consider the following code snippet:

let f:71 — 71 =fin
let f/:7{ - 7= foin
let t: 7] =wv; in

F')

In the example above, since f < f’, we should be able to use f where f’ was expected. Therefore we
should be able to call f(¢'). But f expects an input of type 71 and gets instead an input of type 71, so we
should be able to use 7{ where 71 is expected, which in fact implies that we should have 7{ < 7 instead of
71 < 79 as given.

We can derive the correct subtyping rule for functions by thinking about Figure 4. The outer box
represents a context expecting a function of type 71 — 74. The inner box is a function of type 71 — 75. The



v

L,-T

L, -1

Figure 4: Function subtyping

arrows show the direction of flow of information. So arguments from the outside of type 7{ are passed to a
function expecting 1. Therefore we need 7{ < 71. Results of type 7o are returned to a context expecting 74.
Therefore we need 7o < 75. The rule is:

<1 T2<T)

(FunSuB)

1 —Te < T —Th
The function subtyping rule is our first contravariant rule—the direction of the subtyping relation is
reversed in the premise for the first argument (7).
A coercion function for this relationship can be defined too:

O > <1 = 1) =Af111 = 7. (A2:71.0(12 < 73) (f (O(1] <71) 2)))

Notice that If we tried to write this coercion function for BROKENFUNSUB, we wouldn’t be able to,
because we would have no way to convert the argument x from 71 to 75.

The rule for function subtyping determines how object-oriented languages can soundly permit subclasses
to override the types of methods. If we write a declaration C extends D in a Java program, for example,
it had better be the case that the types of methods in C are subtypes of the corresponding types in D.
Checking this is known as checking the conformance of C with D.

It is sound for object-oriented languages to check conformance by using a more restrictive rule than
FUNSUB, and Java does: as of Java 1.5, it allows the return types of methods to be refined covariantly in
subclasses (the 7o < 74 part of the rule above), which is sound. Java doesn’t, however, permit contravariant
generalization of method arguments, probably because it would interact poorly with the Java overloading
mechanism.

It took a surprisingly long time for everyone to agree on the right subtyping rule for functions. The
broken rule BROKENFUNSUB was actually used for conformance checking in the language Eiffel. Run-time
type-checking had to be added later to make the language type-safe. More recent work on family inheritance
mechanisms such as virtual classes and nested inheritance shows how to soundly permit some of the covariant
overriding that the Eiffel designers wanted.

5 A subtyping semantics by type-preserving translation *

We can give a semantics for subtyping as a type-preserving translation from the language with subtyping to the
language without subtyping. A type-preserving translation translates well-typed source terms to well-typed
target terms. The fact that the translation is well-typed can be seen by induction on the typing derivation; in
fact, we write the translation as operating on typing derivations, just as we did for denotational semantics.
Therefore, E[T e : 7] is the translation of e in context T' to a well-typed term. The type preservation
property is the following:

GITJFET ke 7] : T[]

where we define translations G[I'] and 7 [r] that explain how to translate contexts and types respectively. In
this case the translations of contexts and types are trivial: G[I'] =T and 7 [7] = 7 respectively. Throughout



the translation, we use coercion functions ©(r; < 73), which we know have the type 71 — 73, by induction
on the derivation of 7 < 75. First, consider the case where the typing derivation of e ends in subsumption:

E[lte:7]=0(" <7)&[lte:7]

By induction on the typing derivation (Since ' e: 7/ <T'Fe: 7), we can assume E[I'F e : 7'] : 7/, so the
right-hand side is a well-typed application, with type 7, as required. The remainder of the translation is as
follows:

E[lFnull: 1) =null :1
Ellyx:rka:7]=2 7
E[CtFeger:7]=Eeq: 7 — 7] E[er : 7]
ElE Xzt e 7 =7 =Xe: 7 E[0 7' Fe: 7]

In each case, we can see that the right-hand side of the translation uses translations of the premises of
the appropriate typing rule. Therefore, by induction on the typing derivation, the right-hand side has the
correct type.

For example, in the case E[I' - Az :7".e : 7/ — 7], we have by the induction hypothesis that I,z : 7" F
E[T,z:7" Fe] : 7/, and therefore we can conclude I' - Az: 7/ . E[T,z: 7' Fe: 7] : 7/ — 7.

This the the same process we went through to argue that the denotational semantics was sound for A7,
but now we have a type system on the right-hand side.



