
CS 6110 Lecture 19 Verification conditions and applications 9 March 2009
Lecturer: Andrew Myers

• Verification condition generation for IMP

• Proof of soundness

• Applications: Proof carrying code, automatic patch exploit generation

1 Verification condition generation for IMP

We saw that weakest preconditions don’t really work for while, in the sense that they produce formulas
that are too hard to prove correct, and further, the while precondition construction doesn’t scale to realistic
languages.

One way to get around this weakness is to ask the programmer to supply loop invariants. Every loop
looks like while b do {D} c, where D is the loop invariant. We can then generate a verification condition
that soundly enforces correctness of the program, in the sense that proving the verification condition ensures
the program is correct. The verification condition will not in general be (even relatively) complete—if the
loop invariants are wrong, the verification condition might be false even though the program is correct.

We now define a verification condition generator vc[[c]]B, which takes a command c and a postcondition
c as arguments. This verification condition generator is different, and little more complicated, than the one
in Winskel, Chapter 7. It has the advantage that it only requires invariants to be given in loops, whereas
Winskel’s also requires assertions to be given between commands in sequence.

The function vc[[c]]B = (P,U) where P and U are assertions. The assertion P corresponds to the weakest
precondition that must hold of the state before the command c executes; the assertion U is a formula that
must be true universally. The idea is that if we want to show that a program c is correct (i.e., |= {A}′{c}B),
we prove (A ⇒ P) ∧ U . Therefore, the function vc[[c]]B is sound if:

Soundness: For all c, B, σ, if (P,U) = vc[[c]]B, and σ |=I P , and |= U , and 〈c, σ〉 ⇓ σ′, then σ′ |= B.
We proceed to define vc[[c]]B by induction on the structure of commands, and along the way we prove

soundness by induction on the big-step derivation of 〈c, σ〉 ⇓ σ′.

Case c = skip: vc[[skip]]B = (B,>)

We assume all the antecedents to implication in the soundness condition. Since P = B, then σ |=I B.
And σ = σ′, so σ′ |=I B.

Case c = x := a: vc[[x := a]]B = (B{a/x},>)

Assuming σ |= B{a/x}, then by the substitution lemma we used for Hoare logic,

σ′ = σ[x 7→ A[[a]]Iσ] |=I B

Case c = c1; c2:

vc[[c1; c2]]B = (P1, U1 ∧ U2)
where(P2, U2) = vc[[c2]]B, (P1, U1) = vc[[c1]]P2

We assume 〈c1; c2, σ〉 ⇓ σ′′, so we know that 〈c1, σ〉 ⇓ σ′′ and 〈c2, σ
′′〉 ⇓ σ′ for some σ′′. We also have

σ |=I P1 and |= U1, so we can apply the induction hypothesis to the subderivation 〈c1, σ〉 ⇓ σ′′ to conclude
that σ′′ |= P2. Using |= U2, we apply the induction hypothesis to the subderivation 〈c2, σ

′′〉 ⇓ σ′ to conclude
σ′ |=I B.

Case c = if b then c1 else c2:

1

vc[[c]]B = ((b ∧ P1) ∨ (¬b ∧ P2), U1 ∧ U2)
where (P1, U1) = vc[[c1]]B, (P2, U2) = vc[[c2]]B

Assume WLOG that σ |=I true. Then we know that 〈c1, σ〉 ⇓ σ′. We assume σ |=I (b ∧ P1) ∨ (¬b ∧ P2),
which can only be true if σ |=I P1. With that and |= U1, we can use the induction hypothesis on 〈c1, σ〉 ⇓ σ′

to conclude σ′ |=I B. The case of false is symmetric.

Case c = while b do{D} c′:

vc[[c]]B = (D, (D ∧ b ⇒ P ′) ∧ (D ∧ ¬b ⇒ B) ∧ U ′)
where (P ′, U ′) = vc[[c]]B

Proceed by cases on the value of b. In each case we can assume that σ |=I D and |= (D ∧ b ⇒
P ′) ∧ (D ∧ ¬b ⇒ B) ∧ U ′).

Case σ |=I ¬b: Then σ′ = σ, so σ′ |=I D ∧ ¬b. Because D ∧ ¬b ⇒ B, we know σ′ |= B.

Case σ |=I b: From the evaluation rule we know there exists σ′′ such that 〈c′, σ〉 ⇓ σ′′ and
〈while b do{D} c′, σ′′〉 ⇓ σ′. Since σ |=I Db, σ |= P ′. By the IH on 〈c′, σ〉 ⇓ σ′′, we know that
σ′′ |= D. Since σ′′ |= D and (D ∧ b ⇒ P ′) ∧ (D ∧ ¬b ⇒ B) ∧ U ′, we can use the IH on the
subderivation 〈while b do{D} c′, σ′′〉 ⇓ σ′ to conclude σ′ |=I B.

2

