
CS 6110 Lecture 14 Nonlocal Control: Errors and Exceptions 25 February 2009
Lecturer: Andrew Myers

Last time we introduced CPS as a restriction on the λ-calculus. This was helpful because programs
written in this restricted λ-calculus have a much simpler operational semantics. In fact, we defined the
operational semantics using only a single rule. Another advantage to CPS is that evaluation order decisions
are already determined. In general, CPS style is a more primitive model of computation and therefore easier
to compile.

Now we can give CPS semantics for uML as a translation to a restricted form of uML. Our translation
will also produce strongly-typed uML programs. Then we will extend the translation to uML!. Finally, we
show how to extend uML to support exception handling.

1 CPS Semantics for uML with Strong Typing

1.1 Value Translation

To support strong typing, we introduce type tags that can be used to tag each value with its type.

error 0 null 1 booleans 2
integers 3 pairs 4 functions 5

We represent a value v as a pair (t, v′), where t is the tag and v′ is the target-language term that
corresponds to v. Rather than construct these pairs explicitly, we define injection functions NULL, BOOL,
INT, PAIR, FUN, etc. to tag a raw value with its type; for example, BOOL(true) = (0, true). These

injections can all be defined in terms of a function TAG
4
= λtx. (t, x). Then BOOL = TAG 2, etc.

Similarly, we also define functions to check tags: CHECK-NULL, CHECK-BOOL, CHECK-INT, CHECK-PAIR,
CHECK-FUN, etc.. These functions check that a given tagged value is of the correct type, extract the original
raw value, and pass it to a continuation. For example, CHECK-PAIR is defined as:

CHECK-PAIR
4
= λkv. let (t, b) = v in if t = 4 then k b else halt ERROR

where the parameter k is a continuation and the parameter v is a tagged value. If the tag is 4, indicating
that the raw value is a pair, then we pass the raw value to the continuation. Otherwise we have encountered
a runtime type error, so we pass an error value ERROR = (0,null) to the halt continuation, which ends
the program. We can also define these functions uniformly in terms of a function

CHECK
4
= λtkv. if #1 v = t then k (#2 v) else halt ERROR

Then CHECK-PAIR = CHECK 3, etc.
The precise way that we implement the tagging and checking functions is not crucial. We require only

that these implementations satisfy this equation:

CHECK t k (TAG t′ v) =
{

k v, if t = t′,
halt ERROR, if t 6= t′.

Note that the continuation-passing style affords some flexibility in the way errors are handled. We need
not call the continuation k, but may instead call a different continuation (halt in this example) corresponding
to an error or exception handler.

1

1.2 Expression Translation

Translations are of the form E [[e]]ρk, which means, “Send the value of the expression e evaluated in the
environment ρ to the continuation k.” The translations are:

E [[x]] ρ k = k (LOOKUP ρ “x”)
E [[n]] ρ k = k (INT n)

E [[(e1, e2)]] ρ k = E [[e1]] ρ (λv1. E [[e2]] ρ (λv2. k (PAIR (v1, v2))))
E [[let(x, y) = e1 in e2]] ρ k = E [[e]] ρ (CHECK-PAIR (λp. let (x′, y′) = p in

E [[e2]](EXTEND (EXTEND ρ “x” x′) “y” y′)k))
E [[λx. e]] ρ k = k (FUN(λyk′. E [[e]] (EXTEND ρ “x” y) k′))
E [[e0 e1]] ρ k = E [[e0]] ρ (CHECK-FUN (λf. E [[e1]] ρ (λv. fvk)))

E [[if e0 then e1 else e2]] ρ k = E [[e0]] ρ (CHECK-BOOL (λb. if b then E [[e1]] ρ k else E [[e2]] ρ k)).

2 CPS Semantics for uML!

2.1 Syntax

Since uML! has references, we need to add a store σ to our notation. Thus we now have translations with
the form E [[e]]ρkσ, which means, “Evaluate e in the environment ρ with store σ and send the resulting value
and the new store to the continuation k.” A continuation is now a function of a value and a store; that is,
a continuation k should have the form λvσ. · · · .

The translation is:

• Variable: E [[x]] ρ k σ = k (LOOKUP ρ “x”) σ.

If we think about this translation as a function and η-reduce away the σ, we obtain

E [[x]] ρ k = λσ. k (LOOKUP ρ “x”) σ = k (LOOKUP ρ “x”).

Note that in the η-reduced version, we have the same translation that we had when we translated uML.
In general, any expression in uML! that is not state-aware can be η-reduced to the same translation as
uML. Thus in order to translate to uML!, we need to add translation rules only for the functionality that is
state-aware.

We assume that we have a type tag for locations and functions LOC and CHECK-LOC for tagging values
as locations and checking those tags. We also assume that we have extended our LOOKUP and UPDATE
functions to apply to stores.

E [[ref e]] ρ k σ = E [[e]] ρ (λvσ′. let ` = (MALLOC σ′) in let σ′′ = UPDATE σ′ l v in k (LOC `) σ′′) σ

E [[!e]] ρ k = E [[e]] ρ (CHECK-LOC (λ`σ′. k (LOOKUP σ′ `) σ′))
E [[e1 := e2]] ρ k = E [[e1]] ρ (CHECK-LOC (λ`. E [[e2]] ρ (λvσ′. k (NULL null) (UPDATE σ′ ` v))))

3 Exceptions

An exception mechanism allows non-local transfer of control in exceptional situations. It is typically used
to handle abnormal, unexpected, or rarely occurring events. It can simplify code by allowing programmers
to factor out these uncommon cases.

To add an exception handling mechanism to uML, we first extend the syntax:

e ::= . . . | raise s e | try e1 catch (s x) e2

Informally, the idea is that catch provides a handler e2 to be invoked when the exception named s is
encountered inside the expression e1. To raise an exception, the program calls raise s e, where s is the name
of an exception and e is an expression that will be passed to the handler as its argument x.

2

Most languages use a dynamic scoping mechanism to find the handler for a given exception. When an
exception is encountered, the language walks up the runtime call stack until a suitable exception handler is
found.

3.1 Exceptions in uML

To add exception support to our CPS translation, we add a handler environment h, which maps exception
names to continuations. We also extend our LOOKUP and UPDATE functions to accommodate handler
environments. Applied to a handler environment, LOOKUP returns the continuation bound to a given
exception name, and UPDATE rebinds an exception name to a new continuation.

Now we can add exception support to our translation:

[[raise s e]] ρ k h = [[e]] ρ (LOOKUP h “s”) h

[[try e1 catch (s x) e2]] ρ k h = [[e1]] ρ k (EXTEND h “s” (λv. [[e2]](EXTEND ρ “x” v) k h))
[[λx. e]] ρ k h = k (FUN (λyk′h′. E [[e]] (EXTEND ρ “x” y) k′ h′))

= k (FUN (λy. [[e]] (EXTEND ρ “x” y)))
[[e0 e1]] ρ k h = [[e0]] ρ (CHECK-FUN (λf. [[e1]] ρ (λv. fvkh)))

There are some subtle design decisions captured by this translation. For example, if e2 raises exception
s in try e1 catch (s x) e2, in this translation e2 will not be invoked again. That is, e2 cannot be invoked
recursively.

If we study this translation, in particular the rules for λ and application, we see that it is similar to the
translation for dynamically scoped variables. In fact, the exception mechanism is very similar to having a
set of dynamically scoped variables that contain continuations for the various possible exception handlers,
with raise as the application operation for these variables. Exceptions therefore inherit both the power and
the problems with dynamic scoping. In particular, it is possible to accidentally catch an exception, just as
it is possible to accidentally override a dynamic variable, with hard-to-predict results.

3.2 Exceptions with resumption *

The exception mechanism above has the property that raising an exception terminates execution of the
evaluation context. Most modern programming languages have exceptions with this termination semantics.
A different approach to exceptions is to allow execution to continue at the point where the exception was
raised, after the exception handler gets a chance to repair the damage. This approach is known as exceptions
with resumption semantics. In practice it seems to be difficult to use these mechanisms usefully. The
Cedar/Mesa system supported both kinds of exceptions and found that resumption-style exceptions were
almost never used, and often resulted in bugs when they were.

Operating system interrupts are one place where resumption semantics can be seen. When a process
receives an interrupt, the interrupt handler is run, and then execution continues at the point in the program
where the interrupt happened.

We can give a translation that captures the semantics of resumption-style exceptions. We add two
constructs to uML:

e ::= interrupt s e | try e1 handle (s x) e2

The translation makes the exception-handling environment h a mapping from exception names to func-
tions rather than to continuations:

[[interrupt s e]]ρkh = [[e]]ρ(λv. h s v k)
[[try e1 handle (s x) e2]] = [[e1]]ρk(EXTEND h “s” (λvk′. [[e2]]ρk′h))

This translation shows that with resumption semantics, the exception handler is really a dynamically bound
function that is invoked at the point where the exception happens.

3

