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Lecturer: Andrew Myers

1 Inference rules and rule instances

We defined small-step and big-step semantics using inference rules. These rules are another kind of inductive
definition. To prove properties of them, we would like to use well-founded induction.

To do this, we can change our view and look at reduction as a binary relation. To say that 〈c, σ〉 −→ 〈c′, σ′〉
according to the small-step SOS rules just means that (〈c, σ〉, 〈c′, σ′〉) is a member of some reduction relation,
which is a subset of (Com× Σ)× (Com× Σ). In fact, not only is it a relation, it is a partial function.

Here is an example of the kind of the rule we have been looking at so far.

a1 −→ a′1
a1 + a2 −→ a′1 + a2

(|a1| > 0)
(1)

Here a1, a2, and a′1 are metavariables. Everything above the line is part of the premise, and everything below
the line is the conclusion. The expression on the right side is a side condition.

A rule instance is a substitution for all the metavariables such that the side condition is satisfied. For
example, here is an instance of the above rule:

3 ∗ 4 −→ 12
(3 ∗ 4 + 1) −→ (12 + 1)

(|3 ∗ 4| > 0)

where the substitutions are a1 = 3 ∗ 4, a′1 = 12, a2 = 1.
Another valid instance of the rule is

3 ∗ 4 −→ 11
(3 ∗ 4 + 1) −→ (11 + 1)

(|3 ∗ 4| > 0)

where the substitutions are a1 = 3 ∗ 4, a′1 = 11, a2 = 1.
Note that since an inductively defined set is defined by the rule instances, we are free to introduce

metanotation in rules as long as it is clear what rule instances are generated.
With rules like (1), we are usually trying to define some set or relation. For example, this rule might

be part of the definition of some reduction relation −→ that is a subset of AExp × AExp. Such rules are
typically of the form

X1 X2 . . . Xn

X
(φ)

(2)

where X1, X2, . . . , Xn represent elements that are already members of the set or relation being defined, X
represents a new member of the relation added by this rule, and φ is a collection of side conditions that must
hold in order for the rule to be applied.

The difference between a premise and a side condition is that the side condition is not part of the relation
that the rule is trying to define, while the premises are. The side condition is some restriction that determines
when an instance of the rule may be applied.

Now suppose we have written down a set of rules in an attempt to define a set A. How do we know
whether A is well-defined? Certainly we would like to have X ∈ A whenever X1, X2, . . . , Xn ∈ A and

X1 X2 . . . Xn

X

is a rule instance, but this is hardly a definition of A. What do we put in A to start with?
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2 Rule operator

One approach is to find a well-founded relation such that the rules constitute an inductively defined function,
as described above. Define a rule operator R on sets as follows. Given a set B, let

R(B)
4
= {X | {X1, X2, . . . , Xn} ⊆ B and

X1 X2 . . . Xn

X
is a rule instance}

Then

• R(B) is the set of members of A that can be inferred from the members of set B;

• R(∅) is the set of members that can be inferred from nothing;

• R(R(∅)) is the set of members that can be inferred from R(∅); the elements of R(∅) are in this set
because they are inferred from the empty set, which is a subset of R(∅).

Formally, given a set of rules and a subset B ⊆ S, define a rule operator R that captures the inferences
that can be made from the rule instances:

R(B)
4
= {X | {X1, X2, . . . , Xn} ⊆ B and

X1 X2 . . . Xn

X
is a rule instance}. (3)

Then R is a function mapping subsets of S to subsets of S; that is, R : 2S → 2S , where 2S denotes the
powerset (set of all subsets) of S. An important property of R is that it is clearly monotone: if B ⊆ C, then
R(B) ⊆ R(C). This is because if x ∈ R(B), then there must exist in B the premises {xi} for some rule that
has x in the conclusion. Therefore, we have {xi} ⊆ B ⊆ C. By the definition of R, the same rule can be
used on C, so x ∈ R(C) as well.

What set A ⊆ S is defined by the rules? At the very least, we would like A to satisfy the following two
properties:

• A is R-consistent : A ⊆ R(A). We would like this to hold because we would like every element of A to
be included in A only as a result of applying a rule.

• A is R-closed : R(A) ⊆ A. We would like this to hold because we would like every element that the
rules say should be in A to actually be in A.

These two properties together say that A = R(A), or in other words, A should be a fixed point of R.
There are two natural questions to ask:

• Does R actually have a fixed point?

• Is the fixed point unique? If not, which one should we take?

3 Least fixed points

In fact, any monotone set operator R always has at least one fixed point. It may have many. But among all
its fixed points, it has a unique minimal one with respect to set inclusion ⊆; that is, a fixed point that is a
subset of all other fixed points of R. We call this the least fixed point of R, and we take A to be this set.

The least fixed point of R can be defined in two different ways, “from below” and “from above”:

A∗
4
=

⋃
{Rn(∅) | n ≥ 0} = R(∅) ∪R(R(∅)) ∪R(R(R(∅))) ∪ · · · (4)

A∗ 4
=

⋂
{B ⊆ S | R(B) ⊆ B}. (5)

The set A∗ is the union of all sets of the form Rn(∅), the sets obtained by applying R some finite number
of times to the empty set. It consists of all elements of S that are in Rn(∅) for some n ≥ 0.

The set A∗ is the intersection of all the R-closed subsets of S. It consists of all elements of S that are in
every R-closed set.

We will show that A∗ = A∗ and that this set is the least fixed point of R, so we will take A
4
= A∗ = A∗.
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4 Proof

Obviously, ∅ ⊆ R(∅). Since R is monotone, we can apply it to both sides, obtaining R(∅) ⊆ R2(∅). Clearly
Rn(∅) ⊆ Rn+1(∅) for all n. So we can see that the successive sets Rn(∅) in the union defining A∗ are in a
chain with respect to ⊆:

∅ ⊆ R(∅) ⊆ R2(∅) ⊆ R3(∅) ⊆ R4(∅) ⊆ . . .

4.1 Closure

First, we show that A∗ is R-closed: i.e., R(A∗) ⊆ A∗. Consider an arbitrary x ∈ R(A∗). It must be there is
a rule x1,...xn

x where all of the xi are in A∗. Each of xi must be found first in one of the sets Rm(∅). Since
there are a finite number of premises (n), there must be a set Rm(∅) in the chain that includes all of the
xi. But then Rm+1(∅) must include x, so therefore so does A∗. Since this is true for arbitrary x ∈ R(A∗),
we have R(A∗) ⊆ A∗.

4.2 Consistency

We need to show that A∗ ⊆ R(A∗). Consider an arbitrary x ∈ A∗. We must have x ∈ Rm(∅) for some m.
In this case, we know that all its premises xi are found in Rm−1(∅). Since Rm−1(∅) ⊆ A∗, we can apply R
to both sides to obtain Rm(∅) ⊆ R(A∗). Therefore x must be in R(A∗), and so A∗ is R-consistent.

4.3 Least fixed point

Suppose we have another fixed point of R. Call it B. Given B = R(B), we want to show that A∗ ⊆ B.
Clearly we have ∅ ⊆ B. Applying R to both sides, we obtain R(∅) ⊆ R(B) = B We can repeat as necessary
to obtain Rn(∅) ⊆ B (that is, this holds by induction on n). Therefore the union of all Rn(∅) cannot
contain any elements not in B, so A∗ ⊆ B. In fact, by the same argument, not only is A∗ the least fixed
point, it is the least R-closed set.

5 Other fixed points

In general the rule operator will have other fixed points. These correspond to allowing some proof trees with
infinite derivations. For example, consider these three rules over Z:

0
0

n
n + 1 1

The least fixed point will consist of {n | n ≥ 1}. The greatest fixed point will be N, including 0, because
{0, 1, . . .} is a fixed point of R, even though there is no finite proof tree deriving 0. The greatest fixed point
is the union of all R-consistent sets.

However, we use the least fixed point because it ensures that all the proof trees are finite. Hence, the
subderivation relation on proof trees is well-founded. This would not be the case with other fixed points.

6 Finiteness of premises

One importance feature of inference rules is that the number of premises is finite. We saw that was needed
in the argument that A∗ is R-closed. If inference rules have an infinite number of premises, A∗ need not be
closed! Consider these rules over Z:

1
n

n + 1
m (∀m>n)

n

In this case, the A∗ construction gives us the set {1, 2, . . .}, but 0 ∈ R(A∗).
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7 The Knaster–Tarski Theorem

This material is optional.
The fact that A∗ = A∗ is a special case of a more general theorem called the Knaster–Tarski theorem.

It states that any monotone set operator R has a unique least fixed point, and that this fixed point can be
obtained either “from below” by iteratively applying R to the empty set, or “from above” by taking the
intersection of all R-closed sets.

For general monotone operators R, the “from below” construction may require iteration through transfi-
nite ordinals. However, the operators R defined from rule systems as described above are chain-continuous
(definition below). This is a stronger property than monotonicity. It guarantees that the “from below”
construction converges to a fixed point after only ω steps, where ω is the first transfinite ordinal.

7.1 Monotone, continuous, and finitary operators

A set operator R : 2S → 2S is said to be

• monotone if B ⊆ C implies R(B) ⊆ R(C);

• chain-continuous if for any chain of sets C,

R(
⋃

C) =
⋃

{R(B) | B ∈ C}

(a chain is a set C of subsets of S that is linearly ordered by the set inclusion relation ⊆; that is, for
all B,C ∈ C, either B ⊆ C or C ⊆ B);

• finitary if for any set C, the value of R(C) is determined by the values of R(B) for finite subsets B ⊆ C
in the following sense:

R(C) =
⋃

{R(B) | B ⊆ C, B finite}.

One can show

1. Every rule-based operator of the form (3) is finitary;

2. Every finitary operator is chain-continuous (in fact, the converse holds as well);

3. Every chain-continuous operator is monotone.

The proofs of 1, 2, and 3 are fairly straightforward and we will leave them as exercises. The converse of 2
requires transfinite induction and is more difficult.

7.2 Proof of the Knaster–Tarski Theorem for chain-continuous operators

Let us prove the Knaster–Tarski theorem in the special case of chain-continuous operators, which will allow
us to avoid introducing transfinite ordinals (not that they are not worth introducing!), and that is all we
need to handle rule-based inductive definitions.

Theorem (Knaster–Tarski)
Let R : 2S → 2S be a chain-continuous set operator, and let A∗ and A∗ be defined as in (4) and (5),

respectively. Then A∗ = A∗, and this set is the ⊆-least fixed point of R.

Proof. The theorem follows from two observations:

(i) For every n and every R-closed set B, Rn(∅) ⊆ B. This can be proved by induction on n. It follows
that A∗ ⊆ A∗.

(ii) A∗ is a fixed point of R, thus is R-closed. Since A∗ is contained in all R-closed sets, A∗ ⊆ A∗.
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For (i), let B be an R-closed set. We proceed by induction on n. The basis for n = 0 is ∅ ⊆ B, which is
trivially true. Now suppose Rn(∅) ⊆ B. We have

Rn+1(∅) = R(Rn(∅))
⊆ R(B) by the induction hypothesis and monotonicity
⊆ B since B is R-closed.

We conclude that for all n and all R-closed sets B, Rn(∅) ⊆ B, therefore

A∗ =
⋃

{Rn(∅) | n ≥ 0} ⊆
⋂

{B ⊆ S | R(B) ⊆ B} = A∗.

For (ii), we want to show that R(A∗) = A∗. It can be proved by induction on n that the sets Rn(∅)
form a chain:

∅ ⊆ R(∅) ⊆ R2(∅) ⊆ R3(∅) ⊆ · · ·

We have ∅ ⊆ R(∅) trivially, and by monotonicity, if Rn(∅) ⊆ Rn+1(∅), then

Rn+1(∅) = R(Rn(∅)) ⊆ R(Rn+1(∅)) = Rn+2(∅).

Now by chain-continuity,

R(A∗) = R(
⋃
n≥0

Rn(∅)) =
⋃
n≥0

R(Rn(∅)) =
⋃
n≥0

Rn+1(∅) = A∗.
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