
CS611 Lecture 5 IMP: Big-Step and Small-Step Semantics 3 September 2007
Lecturer: Andrew Myers

1 The IMP Language

We present a simple imperative language, IMP, along with structural operational semantics in two styles:
small-step and big-step.

• the IMP language syntax;

• a small-step semantics for IMP;

• a big-step semantics for IMP;

• some notes on why both can be useful.

1.1 Syntax

There are three types of statements in IMP:

• arithmetic expressions AExp (elements are denoted a, a0, a1, . . .)

• Boolean expressions BExp (elements are denoted b, b0, b1, . . .)

• commands Com (elements are denoted c, c0, c1, . . .)

A program in the IMP language is a command in Com.
Let Var be a countable set of variables. Elements of Var are denoted x, x0, x1 . . . . Let n, n0, n1, . . . denote

integers (elements of Z = {. . . ,−2,−1, 0, 1, 2, . . .}).

(AExp) a ::= n | x | a0 ⊕ a1

(BExp) b ::= true | false | a0 � a1 | b0 � b1 | ¬b

(Com) c ::= skip | x := a | c0 ; c1 | if b then c1 else c2 | while b do c

⊕ ::= + | ∗ | −
� ::= ≤ | =
� ::= ∨ | ∧

1.2 Stores and Configurations

A store (also known as a state) is a function V ar → Z that assigns an integer to each variable. The set of
all stores is denoted Σ. We will assume that the initial value of every variable in the program is zero; that
is, the initial store is λx. 0.

A configuration is a pair 〈c, σ〉, where c ∈ Com is a command and σ is a store. Intuitively, the config-
uration 〈c, σ〉 represents an instantaneous snapshot of reality during a computation, in which σ represents
the current values of the variables and c represents the next command to be executed.

2 Structural Operational Semantics (SOS): Small-Step Semantics

Small-step semantics specifies the operation of a program one step at a time. There is a set of rules that
we continue to apply to configurations until reaching a final configuration 〈skip, σ〉 (if ever). We write
〈c, σ〉 −→ 〈c′, σ′〉 to indicate that the configuration 〈c, σ〉 reduces to 〈c′, σ′〉 in one step, and we write
〈c, σ〉 −→∗ 〈c′, σ′〉 to indicate that 〈c, σ〉 reduces to 〈c′, σ′〉 in zero or more steps. Thus 〈c, σ〉 −→∗ 〈c′, σ′〉
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iff there is a k ≥ 0 and configurations 〈c0, σ0〉, . . . , 〈ck, σk〉 such that 〈c, σ〉 = 〈c0, σ0〉, 〈c′, σ′〉 = 〈ck, σk〉, and
〈ci, σi〉 −→ 〈ci+1, σi+1〉 for 0 ≤ i ≤ k − 1.

To be completely proper, we will define auxiliary small-step operators −→a and −→b for arithmetic and
Boolean expressions, respectively, as well as −→ for commands1 The types of these operators are

−→ : (Com× Σ) → (Com× Σ)
−→a : (AExp× Σ) → AExp

−→b : (BExp× Σ) → BExp

2.1 Small-Step Operational Semantics

We now present the small-step semantics for evaluation of arithmetic and Boolean expressions and commands
in IMP. Just as with the λ-calculus, the evaluation rules are presented as inference rules, which inductively
define relations consisting of the acceptable computational steps in IMP.

2.1.1 Arithmetic Expressions

Variables:
〈x, σ〉 −→a σ(x)

Arithmetic reductions:

〈n1 ⊕ n2, σ〉 −→a n3
(where n3 = n1 ⊕ n2)

Arithmetic subexpressions:

〈a1, σ〉 −→a a′1
〈a1 ⊕ a2, σ〉 −→a a′1 ⊕ a2

〈a2, σ〉 −→a a′2
〈n1 ⊕ a2, σ〉 −→a n1 ⊕ a′2

One subtle point: in the rule for arithmetic operations ⊕, the ⊕ appearing in the expression a1 ⊕ a2

represents the operation symbol in the IMP language, which is a syntactic object; whereas the ⊕ appearing
in the expression n1 ⊕ n2 represents the actual operation in Z, which is a semantic object. In this case, at
the risk of confusion, we have used the same metanotation ⊕ for both of them.

The rules for evaluating Boolean expressions and comparison operators are similar.

2.2 Commands

Let σ[x 7→ n] denote the store that is identical to σ except possibly for the value of x, which is n. That is,

σ[x 7→ n](y)
4
=

{
σ(y), if y 6= x,
n, if y = x.

• Assignments: 〈x := n, σ〉 −→ 〈skip, σ[x 7→ n]〉
〈a, σ〉 −→a a′

〈x := a, σ〉 −→ 〈x := a′, σ〉

• Sequences:
〈c0, σ〉 −→ 〈c′0, σ′〉

〈c0; c1, σ〉 −→ 〈c′0; c1, σ
′〉 〈skip; c1, σ〉 −→ 〈c1, σ〉

1Winskel uses −→1 instead of −→ to emphasize that only a single step is performed. Sometimes people use the arrow 7→
when the evaluation relation is a function.
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• Conditionals:

〈b, σ〉 −→b b′

〈if b then c0 else c1, σ〉 −→ 〈if b′ then c0 else c1, σ〉

〈if true then c0 else c1, σ〉 −→ 〈c0, σ〉 〈if false then c0 else c1, σ〉 −→ 〈c1, σ〉

• While statements: 〈while b do c, σ〉 −→ 〈if b then (c;while b do c) else skip, σ〉

There is no rule for skip, since 〈skip, σ〉 is a final configuration.

3 Structural Operational Semantics: Big-Step Semantics

As an alternative to small-step operational semantics, which specifies the operation of the program one step
at a time, we now consider big-step operational semantics2, in which we specify the entire transition from a
configuration (an 〈expression, state〉 pair) to a final value or store. This relation is denoted ⇓.

For arithmetic expressions, the final value is an integer; for Boolean expressions, it is a Boolean truth
value true or false; and for commands, it is a final state. We write

〈c, σ〉 ⇓ σ′ (σ′ is the store of the final configuration 〈skip, σ′〉, starting in configuration 〈c, σ〉)
〈a, σ〉 ⇓a n (n is the integer value of arithmetic expression a evaluated in state σ)
〈b, σ〉 ⇓b t (t ∈ {true, false} is the truth value of Boolean expression b evaluated in state σ)

The big-step rules for arithmetic and Boolean expressions are straightforward. The key when writing
big-step rules is to think about how a recursive interpreter would evaluate the expression in question. Thus,
the rules for arithmetic expressions are:

• Constants: 〈n, σ〉 ⇓a n

• Variables: 〈x, σ〉 ⇓a σ(x)

• Operations:
〈a0, σ〉 ⇓a n0 〈a1, σ〉 ⇓a n1

〈a0 ⊕ a1, σ〉 ⇓a n
(where n = n0 ⊕ n1)

The rules for commands are a bit trickier:

• Skip: 〈skip, σ〉 ⇓ σ

• Assignments:
〈a, σ〉 ⇓a n

〈x := a, σ〉 ⇓ σ[x 7→ n]

• Sequences:
〈c0, σ〉 ⇓ σ′ 〈c1, σ

′〉 ⇓ σ′′

〈c0; c1, σ〉 ⇓ σ′′

• Conditionals:
〈b, σ〉 ⇓b true 〈c0, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′
〈b, σ〉 ⇓b false 〈c1, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′

• While statements:
〈b, σ〉 ⇓b false

〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓b true 〈c, σ〉 ⇓ σ′ 〈while b do c, σ′〉 ⇓ σ′′

〈while b do c, σ〉 ⇓ σ′′

2Big-step semantics is also known as natural semantics.
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4 Agreement of the big-step and small-step SOS

If the big-step and small-step semantics are both describing the same language, we would expect them to
agree in some sense. In particular, the relations −→∗ and ⇓ both capture the idea of a “large” evaluation. The
expected agreement is the following: if 〈c, σ〉 is a configuration, and it evaluates in the small-step semantics
to 〈skip, σ′〉, we expect that the small state σ′ should be result of big-step evaluation. And vice-versa: the
small-step semantics should be able to reproduce big-step evaluations. Formally,

〈c, σ〉 −→∗ 〈skip, σ′〉 ⇐⇒ 〈c, σ〉 ⇓ σ′

In fact, it is possible to prove this assertion using induction. However, we need some mathematical tools
we have not yet acquired. Note that this statement about the agreement of the semantics has nothing to
say about the agreement of nonterminating computations. This is because big-step semantics cannot talk
directly about nontermination. If 〈c, σ〉 does not terminate, then there is no σ′ such that 〈c, σ〉 ⇓ σ′.

5 Comparison of big-step vs. small-step SOS

5.1 Small-step

• Small-step semantics can clearly model more complex features, like concurrency, divergence, and run-
time errors.

• Although one-step-at-a-time evaluation is useful for proving certain properties, in some cases it is
unnecessary work to talk about each small step.

5.2 Big-step

• Big-step semantics more closely models a recursive interpreter.

• Big steps in reasoning make it quicker to prove some things, because there are fewer rules. The “boring”
rules of the small-step semantics that specify order of evaluation are folded into the way that state is
threaded through the big-step rules.

• Because evaluation skips over intermediate steps, all programs without final configurations (infinite
loops, errors, stuck configurations) look the same. So you sometimes can’t prove things related to
these kinds of configurations.
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