
CS 6110 Lecture 3 Equivalence, Reductions and Normal Forms 30 January 2009
Lecturer: Andrew Myers

1 Term Equivalence

When are two terms equal? This is not as simple a question as it may seem. As intensional objects, two
terms are equal if they are syntactically identical. As extensional objects, however, two terms should be
equal if they represent the same function. We will say that two terms are equivalent if they are equal in an
extensional sense.

For example, it seems clear that the terms λx. x and λy. y are equivalent. The name of the variable is
not essential. But we also probably think that λx. (λy. y) x is equivalent to λx. x too, in a less trivial sense.
And there are even more interesting cases, like λx. λy. x y.

But what function does a term like λx. x represent? Intuitively, it’s the identity function, but over
what domain and codomain? We might think of it as representing the set of all identity functions, but
this interpretation quickly leads to Russell’s paradox. In fact, defining a precise mathematical model for
lambda-calculus terms is far from straightforward, requiring some sophisticated domain theory.

One possible meaning of a term is divergence. There are infinitely many divergent terms; one example is Ω.
In some sense, all divergent terms are equivalent, since none of them produce a value. The implication is that
it is undecidable to determine whether two terms are equivalent, because otherwise, given the relationship
between the λ-calculus and Turing machines, we could solve the halting problem on lambda calculus terms
by testing equivalence to Ω.

1.1 Observational equivalence

Another way of approaching the problem is to say that two terms are equivalent if they behave indistin-
guishably in all possible contexts.

More precisely, two terms will be considered equal if in every context, either

• they both converge and produce the same value, or

• they both diverge.

A context is just a term C[[·]] with a single occurrence of a distinguished special variable, called the hole.
The notation C[e] denotes the context C[[·]] with the hole replaced by the term e. Then we then define
equality in the following way:

e1 = e2 ⇐⇒ for all contexts C[[·]], C[e1] ⇓ v iff C[e2] ⇓ v.

Without loss of generality, we can simplify the definition to

e1 = e2 ⇐⇒ for all contexts C[[·]], C[e1] ⇓ iff C[e2] ⇓,

because if they converge to different values, it is possible to devise a context that causes one to converge and
the other to diverge. Suppose that C[e1] ⇓ v1 and C[e2] ⇓ v2, where v1 and v2 have different behavior. Then
we can find some context C ′[[·]], which applied to v1 converges, and applied to v2 diverges. Therefore, the
context C ′[C[·]] is a context that causes the original e1, e2 to converge and diverge respectively, satisfying
the simpler definition.

A conservative approximation (but unfortunately still undecidable) is the following. Let e1 and e2 be
terms, and suppose that e1 and e2 converge to the same value when reductions are applied according to
some strategy. Then e1 is equivalent to e2. This normalization approach (in which terms are reduced to a a
normal form on which no more reductions can be done) is useful for compiler optimization and for checking
type equality in some advanced type systems.

1

