
CS611 Lecture 1 Introduction 24 August 2007
Scribe: Lecturer: Andrew Myers

1 Introduction

What is a program? Is it just a list of instructions for the computer to do? If a program were just a simple list
of instructions we wouldn’t be able to do much useful with computers. Programs are much more interesting
than that. If we think about a program as just a description of what to do, then part of what a program
means is baked into the computer that interprets it. So you need to describe that computer too, and that’s
clearly more interesting than just a list of instructions.

This is a course about the semantics of programs and programming languages. “Semantics” is simply
a fancy way of saying “meaning”; we want to give a precise meaning to programs. This is useful for many
reasons. It means that we can understand what they are going to do, which is clearly helpful in writing
programs that work. It also helps us when building tools like compilers, optimizers, and interpreters because
it means we can judge whether these tools are implemented correctly.

Programs describe computation, but they’re really a kind of information as well. Suppose we step back
from my initial question and ask a truly fundamental question: “what is information?”. For most of the
information we normally think about, familiar mathematical tools like sets and sequences are adequate to
describe that information. Programs describe computation, but programs are information too—a particularly
interesting kind of information, especially for computer scientists. In this course we’ll see some of the
mathematical, formal tools that are needed to precisely describe what programs are, what programming
languages are, and maybe better answers to the two questions above.

There are three major components to this course.

• Dynamic Semantics. We will study methods for describing what a program does or computes when it
runs.

• Static Semantics. We will also study methods for reasoning about programs before they run. We
would like to consider illegal progams that might go wrong in in various ways, before they run. We
may consider some programs to be ill-formed, for example if they fail type checking and therefore might
contain run-time (dynamic) type errors.

• Language features. We will apply methods for dynamic and static semantics to study actual language
features of interest, probably including some interesting features that many students have not seen
before.

We would like to characterize the semantics of a program as a function produces the output based
on inputs. More generally, real programs are reactive and interact with their inputs arriving from the
environment. Describing this kind of program is more challenging, though we can view the reactive behavior
of the program again as a function of the inputs it receives from the environment as it runs. Thus, to
describe program semantics, we will build up some mathematical tools for constructing and reasoning about
functions.

1.1 Review of mathematical functions

A binary relation on sets A and B is a subset R ⊆ A× B. We write aRb to mean that the pair (a, b) is an
element of R, meaning that R associates a with b.

A (total) function is a relation, in which each element of a set A is associated with a unique element of
another (possibly the same) set B. If f is such a function, we write:

f : A → B

Here, A is the domain of the function and B the codomain. The image of the function is the set of
elements in B that at least one element in A is mapped to.

1

image(f) = {x ∈ B | x = f(a) for some a ∈ A} = {f(a) | a ∈ A}

We avoid the the word range because it is ambiguous: sometimes it is used to refer to the codomain,
sometimes to the image. A partial function f : A ⇀ B is a relation that is a function on some subset of the
domain dom(f) ⊆ A; it associates each element of A with at most one element of B.

We typically think of a function as a mathematical object that allows you to apply it to elements of its
domain. Alternatively, we can view it as the set of all pairs (a, b) it relates. This set of pairs is called the
function’s extension.

1.2 Abstract syntax trees

One way of describing a function is via its extension. Alternatively, we can give an intensional representation—
an expression that describes what you have to do in order to evaluate the function. This class is partly about
how to get from intensional representations of computations to extensional representation.

In this class, the intensional representation of a program expression is the abstract syntax tree (AST) for
that program. We are not concerned with concrete syntax, the actual characters that are used to express
the program. Parsing is an interesting topic, but it is covered elsewhere, in CS412. So when we write an
expression like 2 + 3 ∗ 4, we mean exactly the same expression as 2 + (3 ∗ 4). The parentheses are there just
to make it clear what the parse tree is.

1.3 Lambda Calculus

Introduced by Alonzo Church and Stephen Cole Kleene in the 1930s to describe functions in an unambiguous
and compact manner, lambda calculus1 gives an intensional representation for a function. The lambda
calculus is universal in the sense that any computable function can be expressed and evaluated using this
formalism. It is thus equivalent to a Turing machine.

Real programming languages such as Lisp, Scheme, Haskell and ML are very much based on lambda
calculus, although there are differences as well.

2 Untyped Lambda Calculus

2.1 Syntax

The following is the syntax of the λ-calculus. A term is defined as follows:

e ::= x x ∈ Var where Var is some countable set
| e0 e1 (application)
| λx. e (abstraction)

In an abstraction, x is the argument, e is the body of the function. Notice that this function doesn’t
have a name. In mathematics it is common to define functions as f(x) = x2. A corresponding anonymous
notation that is frequently used is x 7→ x2; this is really the same thing as λx. x2. One nice thing about
lambda terms is that they are an anonymous representation of functions: the function doesn’t have to have
a name like f in order to talk about this.

Here are some examples of terms. First, we present (and define) the identity function:

ID = λx. x

The next example is a function that will ignore its argument and return the identity function.
1Why λ? Church wanted to separate the bound variables from the unbound (free) variables and he used a caret on top of

the bound variables. f(x) = x + yx2 was represented as x̂.x + yx2. Apparently, the printers could not handle the caret and it
moved to the front and became a λ; the expression became λx. x + yx2

2

λx. λa. a

This is the same as

λx. ID

Parentheses are used to show explicitly how to parse expressions, but they are not strictly necessary. It’s
a good idea to include them if you aren’t sure. Lambda terms are like sums: they extend as far to the right
as they can. For example, (λx. x λy. y) is the same thing as (λx. (x λy. y)), not ((λx. x) (λy. y)). Application
is left-associative - that is, e1 e2 e3 is the same thing as (e1 e2) e3.

2.2 Closed terms

An occurrence of a variable x in a term is said to be bound if there is an enclosing λx. e; otherwise, it is free.
A closed term is one in which all identifiers are bound.

Consider the following term:

λx. (x (λy. y a) x) y

Both occurrences of x are bound, the first occurrence of y is bound, the a is free, and the last y is also
free, since it is outside the scope of the λy.

If a program has some variables that are free, then you do not have a complete program as you do not
know what to do with the free variables. Hence, a well formed program in lambda calculus is a closed term.

2.3 Higher-order functions

In lambda calculus, we can define functions that can take functions as arguments and/or return functions as
results. In fact, every argument is a function and every result is a function. That is, functions are first-class
values.

This example takes a function as an argument and applies it to 5:

λf. (f 5)

We can further generalize. This function takes an argument v and returns a function that calls its
argument on v:

λv. λf. (f v)

2.4 Multi-argument functions and currying

A multi-argument lambda calculus (functions having multiple arguments) could be defined as

e ::= . . . earlier stuff . . .
| λx1 . . . xn. e (multi-argument abstraction)
| e0 e1 e2 . . . en (multi-argument application)

In the multi-argument application, e0 is a n-argument function and e1 . . . en are the arguments.
It is known that this isn’t any more expressive than basic lambda calculus. So, we stick to basic lambda

calculus but we may occasionally write down terms that look like the above for convenience. It’s just
syntactic sugar. It can be transformed into something more basic that does not require the extended syntax.
A transformation that removes syntactic sugar is called desugaring.

Desugaring multi-argument functions:

λx1 . . . xn. e ⇒ λx1. λx2. λxn. e

e0 e1 . . . en ⇒ (. . . ((e0 e1) e2) . . . en)

3

