CS611 Lecture 32 Type inference 9 November 2007

Lecturer: Andrew Myers

1 The type inference problem

In the syntax for the simply-typed lambda calculus (and its extensions), we included type declarations. These
type declarations made it possible to construct typing proofs with a simple recursive type checker derived
directly from the typing rules. For example, we had a lambda abstraction term Az :7.e with a corresponding
typing rule:

Iz:the:7

'FXzire:T— 7

Similarly, for extensions such as let and rec, we exploited type annotations:

Ty:r—71,2:7ke: 7 I'te:7 Toz:tke 7
/

F'trecy:t— 7. Av.e:7—7 Thletz:tr=cine :7

Suppose we didn’t have the type annotations. Can we still type-check these terms? We know from
programming in ML that it is possible. We can easily write typing rules for the language without type
annotations:

Dz:the: 7 Ly rt—7,z:7tkhe: 7

PXe.e:7— 17 F'trecy. Av.e:7— 7

I'te:7 Tx:tke 7

I'Fletx=cine : 7’

But without the type annotations, a type checker doesn’t know what type to bind variables like z and y
to in the typing context I'. It seems it must somehow guess.

The problem of type checking code without type annotations is the problem of type inference. It is
also known as type reconstruction, which makes sense if we think of the problem as recovering the type
annotations that were omitted.

To see how we might do type inference, consider inferring types by hand in the following example.

let d = )\z. z+2z in
(A Ax Ay
if (f x y) then
f(dx)y
else
fx (fxy)

What is the type of this term? Because * is an operation on integers, clearly z has type int, and therefore
d has type int — int. Since d is applied to x, we know that x: int, and the first argument to f has type
int. Because (f x y) is used as a boolean, the return type of f must be bool. Since (f x y) is passed
to f as the second argument, that argument must have type bool, and so must variable y. Therefore f:
int—bool—bool and the whole term has type (int—bool—bool)—int—bool—bool.

We can automate this process by rewriting our type system to include type variables that we solve for
as part of type checking. We can write a type system that includes type variables T for the unannotated
lambda calculus (plus let, rec):



axrka:T I'-b6:B

I'key:mg Ther:mm mo=m1—T Le:Tke:7
I'Feyer: T 'FXp.e:T— 1
Fkei:mn Daimber:m DTy, y:Ty —Tobe:7 7 =T,
I'Flet x = e in eg I'Frecy Ax.e: Ty — T

These are really just the same rules as above; the only difference is that some types are named 7. Rather
than guess the right type, a recursive type checker can create a new type variable for each such type. If the
type variables are solved in a way that satisfies each type equation in the rules, then a typing derivation can
clearly be constructed using the typing rules above.

Now we just have the problem of solving type equations. For example, consider the following type
equation:

T1 — Tl x bool = (T3 + iIlt) — T2

We want to find a solution for 77,75, T3 that satisfies this equation. The solution can be expressed as
a substitution S that maps type variables T to types 7. Given a type 7, we write S(7) for the result of
replacing all type variables T in 7 that are in dom(()S) with the corresponding type S(T). (Because there
are no type binders, we don’t have to worry about variable capture.) Given an equation 7 = 7/, our goal is
to find a substitution S such that S(7) and S(7') are syntactically identical. This substitution is a unifier
for the two types, and finding such an S is called unification.

To understand how to find a unifier, we think about the abstract syntax tree for the types being equated.
Here are the ASTs for our example:

- -
7\ _ / \T
T = T — + 2
VNN 2N
\ i bool v T3 int |/
N /N /

— —

~ P
We walk down both trees in parallel until we either hit a contradiction (different type constructors)
or a variable, in which case the variable must be equal to corresponding subtree. So we can see that we
have a solution if 77 = T3 + int and 75 = 77 — bool = (75 + int) * bool. The desired unifier is, then,
{Th\ — T5 + int,T5 — (T3 + int) * bool}, which unifies both sides to (T3 + int) — (73 — int) % bool.
However, since there are no constraints on 75, other unifiers are possible, e.g. {11 — T5 — int, Ty — (T3 —
int) — bool,T5 +— unit}, which unifies both sides to (unit + int) — (unit — int) x bool. To allow us
solve this set of equations in conjunction with other equations that may mention the same variables, and
to preserve maximum polymorphism, we want the weakest unifier, where we say that substitution 57 is
weaker than Sy if there exists a nontrivial substitution S3 such that S = S50 S;. For example, in this case
{T1 — T3 — int, Ty — (T3 — int) — bool}{T3 — unit} is the weakest unifier. It is weaker than the other
substitution, which is seen using S = {75 + unit}.

2 Robinson’s algorithm

Robinson’s algorithm finds the weakest unifier for a finite set of equations E = {ry = 7{,...7, = 7,,}. We
define this as a function unify(E):



unify(0) = 0
unify({B = B} UE) = unify(F)
unify({B1 = Ba} U E) = error (if By # Ba)
unify({T =T} UE) = unify(E)
unify({T =17} UE) = unify({r =T} UE) = unify(E{r/T}) o {T — 7} (if T is not mentioned in 7)
unify({r1 = o =71 = 15} UE) = unify({m1 =7, 72 =75} UFE)

unify({T =17} UE) = error (if no previous rules match)

This definition is well-founded though it is not immediately obvious why. Consider the uses of unify(-)
that appear on the right-hand side. In each case, either the number of variables in the equations being
solved becomes smaller or stays the same, and if the number of variables stays the same, the total size of the
equations becomes smaller (counting the number of nodes in their abstract syntax). Therefore the definition
is well-founded in an ordering on (number of variables, size of equations) in which the number of variables
is primary.

What about the running time of this algorithm? It turns out to be exponential. For example, consider
a program of the following form:

let b = true in

let fy = A\x. x+1 in

let f; = Ax. if b then f; else \y.x y in
let f; = Ax. if b then f; else \y.x y in

let f, = Ax. if b then f,, ; else A\y.x y in
0

The types of the functions grow exponentially in n. If 7,, is the type of f,, then 79 = int — int and
Tn+1 = Tn — Tn. S0 the substitution operations will take exponential time. On this example, running time
will be exponential even though the type of the program is simply int. In fact, the running time of the
algorithm is in the worst case doubly exponential in the size of the program.

In practice, type inference takes linear time for ML, which is because programmers don’t write code that
involves extremely complex types. However, a program similar to this example will cause the SML type
inference algorithm to take a long time. Is this unavoidable?

3 Type inference in polynomial time

With the algorithm as presented, types can grow very large. The real problem is how types are represented,
however. Suppose we represent types using directed acyclic graphs (DAGs) rather than trees. Then 7, can
be represented as a DAG with only linear size:

A




To produce types of this sort through type inference, we restructure the type inference algorithm so that
no substitution is involved. With every type that appears in the equations F, including type variables and
subexpressions of types, we associate a distinct identity. The problem of type inference can then be expressed
as determining which of these various identified types need to be equal to each other to satisfy all the type
equations. Since type equality is transitive, this means that we need to sort the various types into disjoint
sets in a way that satisfies the equations. The problem of computing disjoint sets can be solved efficiently
using the union-find algorithm. With each type identity we have a reference cell that can be filled in to point
to another type that the given type is equal to. For type variables, these reference cells will all initially be
empty. For a type defined using a type constructor, the cell points to a node representing the constructor.

In general, a type variable cell can lead to a chain of pointers terminating in a cell that is either empty
or points to a type constructor. This final cell is the representative for the whole disjoint set. If two types
have the same representative, they are equal. Whenever we need to compare two types, we can quickly test
whether they have the same representative before looking at their structure. To avoid repeatedly chasing
chains of pointers, the union-find algorithm uses path compression : whenever a chain of pointers is chased,
all the cells along the chain are updated to point directly to the representative.

The inference algorithm proceeds as before, except that it does not compute an explicit substitution, and
an equation of the form T = 7 is solved by making the reference cell for T" point to the cell for 7.

Consider our earlier example:

TlﬂTl*b001:T3+int*>T2

Solving this equation results in the following data structure:

—

-~ ~N
- AN

/N AN

e > 2
L L //\ El’/
N bool/T3 int

S~ O

The solution proceeds by first splitting the equation into two equations 77 = T35+ int and 77 *xbool = T5.
The first of these is solved by making T point to the 4+ node. The second is solved by making T, point to
the * node. We never need to set the cell for the T3 node. Notice that we only have to do constant work to
solve T7, because updating its pointer once effectively substitutes it throughout all the equations.

How long does this algorithm take? It needs to compare any given pair of type nodes at most once,
and takes a(n) time to do so assuming path compression. Therefore the total time is O(n?a(n)), which is
polynomial. A tighter bound due to McAllester is O(na(n)—+nd), where d is the depth of the type schema. In
practice this means linear time, though the worst case is quadratic—still a nice improvement over the simple
implementation based on substitution. THe absence of substitution tends to make this implementation faster
in practice as well.



