
CS611 Lecture 24 Denotational semantics of functions 19 October 2007
Lecturer: Andrew Myers

1 Introduction

So far the most interesting thing we have given a denotational semantics for is the while loop. What about
functions? We now have enough machinery to capture some of their semantics, even for mutually recursive
functions. We show how to give a semantics for the language REC, found in Winskel Ch. 9.

2 Denotational Semantics for REC

2.1 REC Syntax

p ::= let d in e

d ::= f1(x1, . . . , xa1) = e1

...
fn(x1, . . . , xan

) = en

e ::= n | x | e1 ⊕ e2 | let x = e1 in e2 | ifp e0 then e1 else e2 | fi(e1, . . . , eai
)

The functions in d (“declarations”) are mutually recursive. It is reasonable to expect that under most
semantics, let f1(x1) = f1(x1) in f1(0) will loop infinitely, but let f1(x1) = f1(x1) in 0 will halt and return
0.

For example,

let
f1(n,m) = if mˆ2 - n

then 1
else ifp (n-m*(n div m))

then f1(n,m+1)
then 0

f2(n) = if f1(n,2) then n else f2(n+1)
in

f2(1000)

In this REC program, f2(n) finds the first prime number p ≥ n. (The value of n − m ∗ (n div m) is
positive iff m does not divide n).

2.2 CBV Denotational Semantics for REC

The meaning function is [[e]] ∈ FEnv → Env → Z⊥, where FEnv and Env denote the sets of variable
environments and function environments, respectively, as used in REC.

ρ ∈ Env = Var → Z
φ ∈ FEnv = (Za1 → Z⊥) × · · · × (Zan → Z⊥)

Here Var is a countable set of variables, Z is the set of integers, which are the values that can be bound
to a variable in an environment, and Zm = Z × Z × · · · × Z︸ ︷︷ ︸

m times

.

1

[[n]]φρ = bnc

[[x]]φρ = bρ(x)c

[[e1 ⊕ e2]]φρ = let v1 ∈ Z = [[e1]]φρ in
let v2 ∈ Z = [[e2]]φρ in

v1 ⊕ v2

= [[e1]]φρ ⊕⊥ [[e2]]φρ

[[let x = e1 in e2]]φρ = let y ∈ Z = [[e1]]φρ in
[[e2]] φρ[x 7→ y]

[[ifp e0 then e1 else e2]]φρ = let v0 ∈ Z = [[e0]]φρ in
if v0 > 0 then [[e1]]φρ else [[e2]]φρ

[[fi(e1, . . . , eai
)]]φρ = let v1 ∈ Z = [[e1]]φρ in

...
let vai

∈ Z = [[eai
]]φρ in

(πi φ)〈v1, . . . , vai
〉

The meaning of a program let d in e is [[e]]φρ, where ρ is some initial environment containing default
values for the variables, and

φ = fix λF ∈ FEnv . 〈λv ∈ Za1 . [[e1]] F ρ[x1 7→ π1(v), . . . , xa1 7→ πa1(v)],
...

λv ∈ Zan . [[en]] F ρ[x1 7→ π1(v1), . . . , xan
7→ πan

(v)]〉.

For this fixed point to exist, we need to know that FEnv is a pointed CPO. But FEnv is a product, and
a product is a pointed CPO when each factor is a pointed CPO. Each factor Zai → Z⊥ is a pointed CPO,
since a function is a pointed CPO when the codomain of that function is a pointed CPO, and Z⊥ is a pointed
CPO. Therefore, FEnv is a pointed CPO.

We also need to know that the function FEnv → FEnv to which we are applying fix is continuous. It is
because is written using the metalanguage.

2.3 CBN Denotational Semantics

The denotational semantics for CBN is the same as for CBV with two exceptions:

[[let x = e1 in e2]]φρ = [[e2]]φ ρ[x 7→ [[e1]]φρ]

[[fi(e1, . . . , eai
)]]φρ = (πi φ)〈[[e1]]φρ, . . . , [[eai

]]φρ〉.

In fact, the lazy semantics is shorter than the eager semantics. This is because we had to explicitly “code
up” strictness, whereas it came from free in the math representation, since mathematics is happy to ignore
nontermination.

2.4 Comments

These semantics tell us something some interesting things about the language. To ensure that we could take
a fixed point, we had to make the codomains of the representations of the fi pointed—we were forced to
recognize the possibility of nontermination. This is one of the nice properties of denotational semantics.

2

Fixed-point semantics also tell us something interesting about compilation. As a rule of thumb, the
presence of a fixed point tells us when we will have to build a cyclical data structure within our compiler,
and backpatching will be needed to create the cycle. We can see this if we imagine what data structure
within the compiler we would need to use to represent the structure φ. The code for each of the fi, which
phi would point to, in turn points back to φ. In a sense, the ability to take a fixed point tells us when we
will succeed in backpatching the pointer that makes the cycle before that pointer needs to be used!

3 A semantics for the untyped lambda calculus

See the Lecture 25 notes.

3

