
CS611 Lecture 22–23 Domain constructions and metalanguage 15–17 October 2007
Lecturer: Andrew Myers

1 Semantics of while

Let’s return to the denotational semantics of the while loop. We previously defined the function

F : (Σ → Σ⊥) → (Σ → Σ⊥)

F
4
= λw ∈ Σ → Σ⊥. λσ ∈ Σ. if B[[b]]σ then (w)∗(C[[c]]σ) else σ.

Any function Σ → Σ⊥ is continuous, since chains in the discrete space Σ contain at most one element,
thus the space of functions Σ → Σ⊥ is the same as the space of continuous functions [Σ → Σ⊥]. Moreover,
the lift (w)∗ : Σ⊥ → Σ⊥ of any function w : Σ → Σ⊥ is continuous.

By previous arguments, the function space [Σ → Σ⊥] is a pointed CPO, and F maps this space to itself.
To obtain a least fixpoint by the Fixed-Point Theorem, we need to know that F is continuous.

Let’s first check that it is monotonic. This will ensure that, when trying to check the definition of
continuity, when C is a chain, {F (d) | d ∈ C} is also a chain, so that

⊔
d∈C F (d) exists. Suppose d v d′. We

want to show that F (d) v F (d′). But for all σ,

F (d)(σ) = if B[[b]]σ then (d)∗(C[[c]]σ) else σ

v if B[[b]]σ then (d′)∗(C[[c]]σ) else σ

= F (d′)(σ).

Here we have used the fact that the operator (·)∗ is monotonic, which is easy to check.
Now let’s check that F is continuous. Let C be an arbitrary chain. We want to show that

⊔
d∈C F (d) =

F (
⊔

C). We have ⊔
d∈C

F (d) =
⊔

d∈C

λσ. if B[[b]]σ then (d)∗(C[[c]]σ) else σ

= λσ.
⊔

d∈C

if B[[b]]σ then (d)∗(C[[c]]σ) else σ

= λσ. if B[[b]]σ then
⊔

d∈C

(d)∗(C[[c]]σ) else σ

= λσ. if B[[b]]σ then (
⊔

C)∗(C[[c]]σ) else σ = F (
⊔

C),

since B[[b]]σ does not depend on d and since the lift operator (·)∗ is continuous.

2 A Metalanguage for Domain Constructions

Last time we did several constructions that required us to check that various domains were CPOs and that
various associated operations were continuous. How can we avoid doing this kind of check over and over
again? One solution is to create an abstract metalanguage consisting of some basic operations that will
allow us to do domain constructions (like function spaces, direct products, etc.) and that will ensure that
the domains that are constructed are CPOs and the associated functions are continuous. We can compose
these constructions to create more complicated domains from simpler ones and always be assured that the
desired mathematical properties hold.

The simplest objects will be the discrete CPOs Z, N and U for the integers, the natural numbers, and
the unit domain, respectively. The unit domain contains a single element unit .

For any domain A, we can construct a new domain A⊥, which is A adjoined with a new element ⊥ below
all the previous elements. Note that ⊥ is intended to be a new element, so we can actually iterate this

1

operation. The associated operations are the natural embedding b·c : D → D⊥ and the lifting operation
(·)∗ : (D → E⊥) → (D⊥ → E⊥) defined by

(d)∗(bxc) 4
= d(x)

(d)∗(⊥)
4
= ⊥

Both these operations are continuous.

2.1 Products

Given CPOs D and E, we can form the product D × E consisting of all ordered pairs < d, e > with
d ∈ D and e ∈ E, ordered componentwise. This is the set-theoretic Cartesian product of D and E with
< d, e >v< d′, e′ > iff d v d′ and e v e′. This is a CPO, and it is easy to check that

⊔
d∈X, e∈Y <

d, e >=<
⊔

X,
⊔

Y >. Along with the product constructor come the projections π1 and π2 defined by
π1(< d, e >) = d and π2(< d, e >) = e, which are continuous. If f : C → D and g : C → E, then the

function < f, g >: C → D × E defined by < f, g >
4
= λx. < f(x), g(x) > is continuous if f and g are. This

is the unique function satisfying the equations f = π1◦ < f, g > and g = π2◦ < f, g >. The binary product
can be generalized to an arbitrary product

∏
x∈X Dx with associated projections πy :

∏
x∈X Dx → Dy.

2.2 Sums

Given CPOs D and E, we can form the sum (or coproduct) D + E, corresponding to the disjoint union of
D and E. We would like to take the union of the sets D and E, but we need to mark the elements to make
sure we can tell which set they originally came from in case D and E have a nonempty intersection. To do
this, we define

D + E
4
= {in1(d) | d ∈ D} ∪ {in2(e) | e ∈ E},

where in1 and in2 are any one-to-one functions with disjoint ranges; for example, we could take in1(x) =<
1, x > and in2(x) =< 2, x >. We define ini(x) v inj(y) iff i = j and x v y. Any chain in D + E must be
completely contained in {in1(x) | x ∈ D} or {in2(x) | x ∈ E}, so D + E is a CPO. The associated operations
are the injections in1 : D → D+E and in2 : E → D+E, which are continuous. If f : D → C and g : E → C,
then we can combine f and g into a function f + g : D + E → C using a case construct:

f + g
4
= λx. case x of in1(y) → f(y) | in2(y) → g(y)

This is continuous if f and g are, and it is the unique function satisfying the equations f = (f + g) ◦ in1

and g = (f + g) ◦ in2. As with products and projections, the binary coproduct can be generalized to an
arbitrary coproduct

∑
x∈X Dx with associated injections iny : Dy →

∑
x∈X Dx.

2.3 Continuous functions

Finally, given CPOs D and E, we can define the CPO [D → E] of all continuous functions from D to E
with the pointwise ordering.

It is not obvious that continuous functions themselves form a CPO. Essentially, we want to show that⊔
n fn is continuous (i.e. given chains fn, dm that (

⊔
n fn)(

⊔
m dm) =

⊔
m((

⊔
n fn)dm).)

2

2.4 Attempt

It would be nice to try to argue as follows:

Start with (
⊔
n

fn)(
⊔
m

dm)

Since LUB is defined pointwise = (
⊔
n

(fn

⊔
m

dm))

By continuity offn = (
⊔
n

(
⊔
m

fn(dm)))

By wishful thinking = (
⊔
m

(
⊔
n

fn(dm)))

Since LUB is defined pointwise =
⊔
m

((
⊔
n

fn)dm)

(1)

Alas, wishful thinking proves little. We need to show that joins (
⊔

) commute, at least, that they commute
when dealing with continuous functions fn.

2.5 Proof

Theorem 2.1. Given a chain of monotonic functions fn and a chain of arguments dm, we have
⊔

n

⊔
m fn(dm) =⊔

m

⊔
n fn(dm).

Proof. We will introduce a lemma which does all the real work of the theorem:

Lemma 2.2. Given a bi-indexed infinite chain enm such that enm v en′m′ iff (n ≤ n′ and m ≤ m′), it is
the case that

⊔
n

⊔
m enm =

⊔
k ekk =

⊔
m

⊔
n enm⊔

n

⊔
m enm

⊔
k ekk

⊔
m

⊔
n enm

⊔
m em2

88

⊔
n e2n

ff

⊔
m em1

88qqqqqqqqqq
e22

ff 88

KS

⊔
n e1n

ffLLLLLLLLLL

⊔
m em0

99sssssssss
e12

ff 88rrrrrrrrrrrr
e21

ffLLLLLLLLLLLL

88

⊔
n e0n

ddIIIIIIIII

e02

ee 77pppppppppppp
e11

ffMMMMMMMMMMMM

88qqqqqqqqqqqq

KS

e20

ffNNNNNNNNNNNN

99

e01

ggOOOOOOOOOOOO

77oooooooooooo
e10

ggOOOOOOOOOOOO

77oooooooooooo

e00

ggOOOOOOOOOOOO

77oooooooooooo

KS

Proof. Consider some k. Certainly, ekk v
⊔

n enk for each k, and so
⊔

m emm v
⊔

m

⊔
n enm.

Now, note that for all n and m, there exists k such that k ≥ m and k ≥ n (in particular, k = max(m,n))
and thus for each n, m there is k such that enm v ekk, so we also have

⊔
n enm v

⊔
k ekk. From this, we see

that
⊔

m

⊔
n enm v

⊔
m emm, and thus conclude that

⊔
m emm =

⊔
m

⊔
n enm.

3

The case with reversed indices is symmetric, so the lemma is proved.

To complete the proof of the theorem, we let enm = fn(dm), and note that for n ≥ n′,m ≥ m′ we have
enm ≥ en′m′ by dm and fn being chains, and the fn being monotonic, so we may apply the lemma.

The operations on continuous functions are:

1. apply : [D → E]×D → E that applies a given function to a given argument;

2. compose : [E → F]× [D → E] → [D → F];

3. curry : [D × E → F] → [D → [E → F]];

4. uncurry : [D → [E → F]] → [D × E → F]; and most importantly,

5. fix : [D → D] → D, defined by λg ∈ [D → D].
⊔

gn(⊥), that takes a function and returns its least
fixpoint. To apply fix, D must have a bottom element ⊥.

All these functions are continuous, which can be shown without too much effort.

4

