CS611 Lecture 20 Denotational Semantics of IMP 10 October 2007

Lecturer: Andrew Myers

1 Denotational Semantics
1.1 Introduction

So far we have been looking at translations from one language to another, where the target language is simpler
or better understood. These are called definitional translations. Another approach to semantics, denotational
semantics, involves translations to mathematical objects. The objects in question will be functions with well-
defined extensional meaning in terms of sets. The main challenge will be getting a precise understanding of
what sets these function operate over.

For example, consider the identity function Az.x. This clearly represents some kind of function that
takes any input object = to itself. But what is its domain? An even more interesting example is the function
Az.zx. Let’s say that the domain of this function is D. Then x represents some element of D, since x is an
input to the function. But in the body, z is applied to =, so z must also represent some function D — F.
For this to make sense, it must be possible to interpret every element of D as an element of D — E. Thus
there must be a function D — (D — E).

It is conceivable that D could actually be isomorphic to the function space D — E. However, this is
impossible if E contains more than one element. This follows by a diagonalization argument. Let ey, e; € F,
eg # e1. For any function f : D — (D — E), we can defined : D — E by d = A\x.if f © & = e(then e; else eg.
Then for all x, d x # f x x, so d # f x for any «x, thus f cannot be onto.

This type of argument is called diagonalization because for countable sets D, the function d is constructed
by arranging the values f = y for z,y € D in a countable matrix and going down the diagonal, creating a
function that is different from every f x on at least one input (namely z).

0 1 2
folfoO fol fo2
filfi0 fil fi2
folfo0 fol fo2

The solution to this conundrum is that the set of computable functions is smaller than the set of all
functions—almost all functions are not computable.

1.2 Denotational Semantics for IMP

Therefore, in constructing our denotational semantics, we will be careful only to write down functions that
are well-defined, operating over well-defined domains and codomains. We will write Ax € D .e to represent
a function from domain D to the codomain of e. Then we can be sure that the function has an extensional
representation.

Note that this functions somewhat like a type declaration, but types are language syntax, whereas D
here denotes a set, a mathematical object. Later, we will introduce types and write type declarations such
as in A\z:7.e.

Recall that the syntax of IMP is:

a == n | x| ada
b == true | false | =b | bgAb1 | ap=a1 |
¢ == skip | z:=a | cp;e1 | if bthen ¢; else co | while b do ¢

The syntactic categories a, b, ¢ are arithmetic expressions, Boolean expressions, and commands, respectively.
To define the denotational semantics, we will refer to states, which are stores, functions ¥ = Var — Z.

Ala] € ¥ —-7Z
B[] € ¥ —2 where 2 = {true, false}
Cle] € -7

Intuitively, we would like the meaning of commands to be functions from states to states. Given an initial
state, the function produces the final state reached by applying the command. However, there will be no
such final state if the program does not terminate (e.g., while true do skip). Thus the function would have
to be partial. However, we can make it a total function by including a special element L (called bottom)

denoting nontermination. For any set S, let S| £ {le] | 0 € S} U{L}. The element || is the injection
of o into S, . It is useful to distinguish between o and |o]. Then C[c] € ¥ — X, where Cc = 7 if ¢
terminates in state 7 on input state o, and Cc = L if ¢ does not terminate on input state o.

Now we can define the denotational semantics of expressions by structural induction. This induction is
a little more complicated since we are defining all three functions at once. However, it is still well-founded
because we only use the function value on subexpressions in the definitions. For numbers,

Aln] = deXn = {(o,n)|oceX}.

For the remaining definitions, we use the shorthand of defining the value of the function given some o € X.

Alz]e = o(x)
Alar @ az]Jo = Afair]o @ Afasz]o
Btrue]oc = true

Blfalse]oc = false

Bl-btlr - true, ?f B[b]o = false,
false, if B[b]o = true.

We can express negation more compactly with a conditional expression:
B[-b]jo = if B[b]o then false else true.
Alternatively, we can write down the function extensionally:
{(o,true) |c € EA-B[b]o} U {(o,false) | o € ¥ A B[b]o}.
For the commands, we can define

Clskip]e = |o

Clz:=a]o = |o

—_—

Alalo /]|
c]o, if B[b]o = true,

Clif b th 1
[i en c; else c3o ca]o, if B[b]o = false.

—N
S8

For sequential composition,

Cle2]o’, if Clei] = |o']

O_/
Cles: -
[e1; ea]o {J_, it Cleao = L.

Another way of achieving this effect is by defining a lift operator on functions:
()« (D—EL)—(DL—EL)
41, ife=_1

T .
(f)7 = dwen. {f(a)7 if x = |o]

With this notation, we have
Cleveo]o = (Cle2])” (Clea]o) .

We have one command left: while b do ¢. This is equivalent to if b then ¢; while b do c¢ else skip, so
a first guess at a denotation might be:

C[while b do cJo = if B[b]o then C[c; while bdo c]o else o (1)
= if B[b]o then (C[while bdo c])*(C[c]o) else o (2)

but (2) is a circular definition: an equation that we expect the denotation of while to satisfy. We can see
this more clearly by defining:

W 2 C[while b do (].
Then we can write (2) as follows:
W = Ao € X.if B[b]o then W*(C[c]o) else o.
Define F as
F 2 cweX o€ Nif Blb]o then (w)*(C[c]o) else o.

Then we can write (2) simply as W = F(W). In other words, we are looking for a fixed point of F. Our
current technology for finding fixed points is to use the Y combinator, but this is not a well-defined function,
because it uses self-application.

The solution will be to think of a while statement as the limit of a sequence of approximations. Intuitively,
by running through the loop more and more times, we will get better and better approximations.

The first and least accurate approximation is the function that never terminates.

Wo 2 Xoedx. L.

This simulates 0 iterations of the loop. It’s the denotation for C[while true do skip], but not for while
loops that can terminate. To get the next approximation, we apply F to the previous one:

Wi 2 F(Wo)

= Ao € X.if B[b]o then Wi (C[c]o) else o
Ao € X.if B[b]o then L else o.

This simulates 1 iteration of the loop. We could then simulate 2 iterations by:
Wy, 2 F(Wy) = Xo € X.if B[b]o then (W7)*(C[c]o) else o.

In general,

AN
Wn+1 -

F(Wy) = o€ X.if B[b]o then W) (C[c]o) else o.

The denotation W,, represents the behavior of the loop correctly as long as the loop guard b is evaluated no
more than n times. Intuitively, the denotation of the while statement is a limit of this sequence. But how
do we take limits in a space of functions? We need more structure on the space of functions. We will define
an ordering C on these functions such that Wy C W7 C W5 C ..., then find the least upper bound of this
sequence.

1.3 Partial Orders

A partial order (also known as a partially ordered set or poset) is a pair (S, C), where
e S is a set of elements.
e [is a relation on S which is:
1. reflexive: x C x
it. transitive: (zCyAyLCz2)=zC 2
iii. antisymmetric: (t CyAyCz) =z =y
Examples:

e (Z <), where Z is the integers and < is the usual ordering.

(Z,=) (Note that unequal elements are incomparable in this order. Partial orders ordered by the
identity relation, =, are called discrete.)

(29,C) (Here, 29 denotes the powerset of S, the set of all subsets of S, often written P(S), and in
Winskel, Pow(S).)

° (23,:_))

(S,3), if we are given that (S,C) is a partial order.

(w,]), where w = {0,1,2,...} and alb < (a divides b) < (b = ka for some k € w). Note that for any
n € w, we have n|0; we call 0 an upper bound for w (but only in this ordering, of course!).

Non-examples:
e (Z,<) is not a partial order, because < is not reflexive.

e (Z,C), where m C n < |m| < |n|, is not a partial order because C is not anti-symmetric: —1 C 1 and
1C —1,but —1# 1.

The “partial” in partial order comes from the fact that our definition does not require these orders to
be total; e.g., in the partial order (2{%:*}, C), the elements {a} and {b} are incomparable: neither {a} C {b}
nor {b} C {a} hold.

Hasse diagrams Partial orders can be described pictorially using Hasse diagrams®. In a Hasse diagram,
each element of the partial order is displayed as a (possibly labeled) point, and lines are drawn between
these points, according to these rules:

1. If x and y are elements of the partial order, and x C y, then the point corresponding to x is drawn
lower in the diagram than the point corresponding to y.

2. A line is drawn between the points representing two elements x and y iff x C y and —3z in the partial
order, distinct from z and y, such that « C z and z C y (i.e., the ordering relation between z and y is
not due to transitivity).

An example of a Hasse diagram for the partial order on the set 2{*®¢} using C as the binary relation is:

INamed after Helmut Hasse, 1898-1979. Hasse published fundamental results in algebraic number theory, including the
Hasse (or “local-global”) principle. He succeeded Hilbert and Weyl as the chair of the Mathematical Institute at Gottingen.

- {a,b,c}\
{b,c} {a,c}

{c}

{a,b
{b} }\{a}
N

{3

A partial order like (Z, =) is called a discrete partial order. No elements are related to each other.

Given any partial order (S,C), we can define a new partial order (S, ,C) such that |dy] T, |do] if
di,ds € S and d; C do, and L C, |d] for all d € S. Thus if S is any set, then S, is that set with a new
least element 1 added. In our semantic domains, we think of C as “contains less information than”. Thus
nontermination | contains less information than any element of S.

If we lift a discrete partial order (e.g., Zyot), we get a flat partial order. The only relationships among
different elements are between L and each other element. Flat partial orders turn out to be useful.

