CS611 Lecture 9 Semantics via Translation 18 September 2006

Lecturer: Andrew Myers

1 Overview

Our goal is to study basic programming language features using the semantic techniques we know:
e small-step operational semantics;
e big-step operational semantics;
e translation.

We will mostly use small-step semantics and translation.

2 Translation

For translation, we map well-formed programs in the original language into items in a meaning space. These
items may be

e programs in an another language (definitional translation);

e mathematical objects (denotational semantics); an example is taking Az : int. z to {(0,0), (1,1),...}.

Because they define the meaning of a program, these translations are also known as meaning functions
or semantic functions. We usually denote the semantic function under consideration by [-]. An object e in
the original language is mapped to an object [e] in the meaning space under the semantic function. We may
occasionally add an annotation to distinguish between different semantic functions, as for example [e]cpn or

[[e]]c-

3 Translating CBN A-Calculus into CBV A-Calculus

The call-by-name (lazy) A-calculus was defined with the following reduction rule and evaluation contexts:

(Ax.e1) e — er{ea/x} E =[]]| Fe.
The call-by-value (eager) A-calculus was similarly defined with
(Ax.e) v — efv/x} E:=][]] Ee | vE.

These are fine as operational semantics, but the CBN semantics rules don’t do a good job of capturing
why CBN is more expensive than CBV. We can see this better by constructing a translation from CBN to
CBV. That is, we treat the CBV calculus as the meaning space. Because CBV is closer to how the underlying
machine works, this translation exposes some issues that need to be addressed when implementing a lazy
language.

To translate from the CBN A-calculus to the CBV A-calculus, we define the semantic function [-] by
induction on the structure of the translated expression:

[z] = 21 (I=M\z.2)
[Me.e] = Ax.[e]
[er e2] = [ei] (Az.[e2]), where z ¢ FV([e2]).

The key issue is how to make function application lazy in the arguments. CBV evaluation will eagerly
evaluate all the argument expressions, so they need to be protected from evaluation. This is accomplished
by wrapping the expressions passed as function arguments inside A-abstractions to delay their evaluation.
When the value of a variable is really needed, the abstraction can be passed a dummy parameter to evaluate
its body.

For an example, recall that we defined:

true 2 ATy. x
false 2 Azy. y
if 2 ATyz. xYZ2.

The problem with this construction in the CBV A-calculus is that if b e; es evaluates both e; and e,
regardless of the truth value of b. The conversion above can be used to fix these to evaluate them lazily.

[true] = [Mxy.z]

= Azy.[z]

= dzy.xl

[false] = Mzxy.yI
[if] = [Myz. zyz]

Azyz. [(zy)2]
Azyz. [xy] (Ad. [2])
— ey o] (M. Ty]) (A [2])
= Xxyz.(z 1) (Md.y I) (Md.z I).
This is not a complete solution, as the conversion does not work for all expressions, but only fully

converted ones. But if used as intended, it has the desired effect. For example, evaluating under the CBV
rules,

if] (Ad. [true]) (Ad. [e1]) (Ad. [e2])
Aeyz. (z 1) (Ad.y) (Ad. 2 T)) (Ad. [true]) (Ad. [e]) (Ad. [e2])

[[

((

((Ad. [true]) I) (Ad. (Ad. [e1]) I) (Ad. (Ad. [e2]) I)
— [true] (M\d.[e1]) (Ad.[e2])

(

(

[

Jif true e; e5] =

Azy. x I) (Ad. [e1]) (Ad. [e2])
Ad.[ed]) I

61]]

and ey was never evaluated.

4 Adequacy

Both the CBV and CBN A-calculus are deterministic systems in the sense that there is at most one reduction
that can be performed on any term. When an expression e in a language is evaluated in a deterministic
system, one of three things can happen:

1. The computation can converge to a value: e | v.

2. The computation can reach a non-value from which there is no further transition. When this happens,
we say the computation is stuck.

3. The computation can diverge: e 1.

A semantic translation is adequate if these three behaviors in the source system are accurately reflected
in the target system, and vice versa. One aspect of this relationship is captured in the following diagram:

e — 0V

*
[e]l ——v = [v]

If an expression e converges to a value v in zero or more steps in the source language, then [e] must converge

to some value v’ that is equivalent in some way (e.g., f-equivalence) to [v], and vice-versa. This is formally

stated as two properties, soundness and completeness. For our CBN-to-CBV translation, these properties

take the following form:

4.1 Soundness

[e] = = F.e-——vAv =][v]
cbv cbn
In other words, any computation in the CBV domain starting from the image [e] of a CBN program
e must accurately reflect some computation in the CBN domain. Intuitively, no bad things happen in the
target language.

4.2 Completeness

e——v = . [e] = v AV =[v]
cbn cbv

In other words, any computation in the CBN domain starting from e must be accurately reflected by the

computation in the CBV domain starting from the image [e]. Intuitively, all good things can happen in the

target language.

4.3 Nontermination

It must also be the case that the source and target agree on nonterminating executions. Assuming that
the source language never gets stuck, this follows from the soundness and completeness properties. But in
general, the source language may get stuck. We write e { and say that e diverges if there exists an infinite
sequence of expressions eq, es, ... such that e — e; — e3 — The additional condition for adequacy
is

e ffebn = [[6]] Meby -

The direction < of this implication can be considered part of threquirement for soundness, and the direction
= can be considered part of the requirement for completeness. Adequacy is the combination of soundness
and completeness.

5 Proving adequacy *

We would like to show that evaluation commutes with translation in our CBV—CBN translation. To do
this we first need a notion of target term equivalence (/) that is preserved by evaluation. This is made more
challenging because as evaluation takes place in the target language, intermediate terms are generated that
are not the translation of any source term. For some translations (but not this one), the reverse may also

happen. Therefore, equivalence needs to allow for some extra (3 redexes that appear during translation. We
can define this equivalence by structural induction on CBV target terms.

r = T

Az.t o~ .t (ift = t)

tot1 =~ tot] (if to ~ t{, and t; =~ t})
t ~ (Az.t) I (if z ¢ FV(t))

Here, t represents target terms, to keep them distinct from source terms e. We also include rules so that
the relation = is reflexive, symmetric, and transitive. Clearly, if two terms are considered equivalent with
respect to this relation, they will have the same -normal form.

The approach to showing adequacy is to show that each step in the source term is mirrored by evaluation
steps in the corresponding target term, and vice versa. So we define a correspondence between source and
target terms that is more general than the translation [[-]], and is preserved during evaluation of both source
and target.

We write e < ¢ to mean that CBN term e corresponds to CBV term ¢. The following proposition captures
the idea that CBV evaluation simulates CBN evaluation at the level of individual steps:

eSthe—e =Tt -t ne St (1)
This can be visualized as a commutation diagram:

(& 4>e'

t ——t (= [¢])

In fact, since in this case the source language cannot get stuck during evaluation, and both languages
have deterministic evaluation, (1) ensures that evaluation in each language corresponds to the other.

We define the relation < in such a way that e < [e]. Then, using (1), we can show that any trace in the
source language produces a corresponding trace in the target, by induction on the number of source-language
steps.

We define the relation < as follows:

z S xl (2)
Az.e S .t (ife <t) (3)
eoer S otg (A.tq) (if eg S to, €1 Sth) (4)

e S (At)I (ife<t) (5)

For simplicity, we ignore the fresh variable that would be used in the new lambda abstraction in line (4).

Lines (2-4) straightforwardly ensure that a source term corresponds to its translation. Line (5) is different;
it takes care of the extra § reductions that crop up during evaluation. Because the ¢ side of the < relation
becomes structurally smaller in this rule’s premise, the definition of the relation is still well-founded. Lines
(2-4) are well-founded based on the structure of e; Line (5) is well-founded based on the structure of ¢. If
we were proving a more complex translation correct, we would need more rules like (5) for other meaning-
preserving target-language reductions.

First, let’s warm up by showing that a term corresponds to its translation.

Lemma 1

Proof: an easy structural induction on e.

Case z: x < x I by definition.

Case \z.e’: We have [e] = A\z. [¢]. By the induction hypothesis (IH), ¢’ < [e'], so Az.e’ < Ax. [e'] by
(3)-

Case ey e1: We have [e] = [eo] (A.[e1]). By the IH, eg < [eo] and er < [er]. Therefore by (4),
eo €1 < [eo] [ei]-

Next, let’s show that if e corresponds to t, its translation is equivalent to ¢:

Lemma 2

eSt=[e] =t

Proof: an induction on the derivation of e < .

Casez Sz Ik
Trivial: [2] =z L

Case \x.e’ < Ax.t’ where ¢/ < t':

Here, [e] = Az. [¢']. TH: [e'] = t. Therefore Az. [e¢'] =~ Ax.t’ as required.

Case eg e1 Sto (A.t1) where eg St and e S ty:
Here, [eg e1] = [eo] (. [e1]), and by the TH, [eg] ~ to and [e1] ~ ¢1. So from the definition of =, we
have [eo](A.[e1]) = to (A.t1).

Case e S (A.t) I where e S t:
IH: [e] =~ t. But t ~ (\.t) I, and =~ is transitive.

Given these definitions, we can prove (1) by induction on the derivation of e < t. We will need two useful
lemmas. The first is a substitution lemma that says substituting corresponding terms into corresponding
terms produces corresponding terms:

Lemma 3

€1 fj t1 N eg 5 to = 62{61/.’E} 5 tg{)\tl/lf}

Proof. By induction on the derivation of ey < t5.

Casex Sz L
We have ea{e1/x} = e1 and ta{\. t1/2} = (A.t1) I By rule (5), we have e; < (A\.t1) L

Case y < y I where y # z:
Trivial: substitution has no effect.

Case \z.e < Ax.t where e < t:
Trivial: The substitutions into ey and t5 have no effect.

Case A\y.e < A\y.t where e < ¢, x # ¥
Here ea{e1/x} = Ay. e{er/x} and to{\. t1/x} = Ay. t{\.t1/x}. Since e < ¢, by the induction hypothesis
we have e{e1/z} S t{\.t1/x}. Therefore by (3), A\y.e{e1/x} < Ay.t{\.t1/x}, as required.

Caseee <t (At'), wheree Stand e <t
We have ex{ei/xz} = e{ei/x} e'{ei/x}, and to{X.t1/2} = t{\.t1/x} (A\.t'{t1/2}). From the in-
duction hypothesis, e{ei/x} < t{\.t1/z} and e'{e1/z} < t/{\.t1/x}. Therefore, by (4) we have
e{er/z} e{er/x} St{A.t1/x} (A\.t'{t1/x}).

e Case ey < (M. 1)) I, where ey < t):
We need to show that ex{e1/xz} < ((A.t5) D{\.t1/x}; that is, ea{er/z} S (N .th{\.t1/x}) D).
From the induction hypothesis, we have ea{e;/x} < th{\.t1/x}. By (5), this means ex{e1/z} <
(A th{\.t1/z}) L

The next lemma we need says that if a value Ax.e corresponds to a term ¢, then ¢ reduces to a corre-
sponding lambda term A.¢'.

Lemma 4
MeSt=3.t —* Aot/ A et

Proof. By induction on the derivation of Az.e < t.

e Case y S y I Impossible, as y # Az.e.

e Case \zx.e < Ax.t/ where e S ¢
Here, t = Az.t', and the result is immediate.

e Case eg e1 S tg (M. t1): Impossible, as ey e1 # Az.e.

e Case eg S (A tg) I, where eg < tp:
In this case eg = Az.e, and t = ((A. o

to) I). By the inductive hypothesis, there is some ¢’ such that
to —* Ax.t’ and e S t'. Since t = ((A\. o)

0) I) — to we have t —* \xz.t', as required.

We are now ready to prove (1).

Proof. By induction on the derivation of e < ¢:
e Case x <z I Vacuously true, as there is no evaluation step ¢ — ¢’.
e Case \z.e < Azx.t: A value: also vacuously true.

e Case eg e1 Stg (MN.t1), where eg S to and eg < ty:
We show this by cases on the derivation of e — ¢’

— Case eg e1 — €(, e1, where eg — e
By the induction hypothesis, Jt{.ej < tgAto —* ¢). It is easy to see that therefore to (A. 1) —*
to (A.t1). So by (4), ef ex S tf (A t1), as required.

— Case (Azx.e2) e; — ea{er/x}:

Here \z.ex < tg and e; < ty.

By Lemma 4, there exists a ty such that t¢ —* Az.ty and es < ty. Therefore, we have
to (A.t1) —* (Ax.t2) (A.t1) — ta{A.t1/x}. But from the substitution lemma above (Lemma 3),

we know that es{ey/z} < ta{A.t1/2}, as required.

e Case eg < (A.tp) I, where e < to:
By the induction hypothesis, 3tj.eq < ¢ Atg —* t. It is easy to see that therefore ((A.tg) I) —
to —* ¢, as required.

Having proved (1), we can show completeness of the translation. If we start with a source term e and
its translation [e], we know from Lemma 1 that e < [e]. From (1), we know that each step of evaluation
of e is mirrored by execution on the target side that preserves e < ¢. If the evaluation of e diverges, so
will the evaluation of [e]. If the evaluation of e converges on a value v, then the evaluation of [e] will
reach a convergent (by Lemma 4) term ¢ such that v < ¢t. And by Lemma 2, [v] ~ t. This demonstrates
completeness.

To show soundness of the translation, we need to show that every evaluation in the target language
corresponds to some evaluation in the source language. Suppose we have a target-language evaluation
t —* o', where t = [e], but there is no corresponding source-language evaluation of e. There are three
possibilities. First, the evaluation of e could get stuck. This can’t happen for this source language because all

terms are either values or have a legal evaluation. Second, the evaluation of e could evaluate to a value v. But
then v must correspond to v/, because the target-language evaluation is deterministic. Third, the evaluation
of e might diverge. But then (1) says there is a divergent target-language evaluation. The determinism of
the target language ensures that can’t happen.

