
CS611 Lecture 4 Equivalence, Reductions and Normal Forms 31 August 2007
Lecturer: Andrew Myers

1 Term Equivalence

When are two terms equal? This is not as simple a question as it may seem. As intensional objects, two
terms are equal if they are syntactically identical. As extensional objects, however, two terms should be
equal if they represent the same function. We will say that two terms are equivalent if they are equal in an
extensional sense.

For example, it seems clear that the terms λx. x and λy. y are equivalent. The name of the variable is
not essential. But we also probably think that λx. (λy. y) x is equivalent to λx. x too, in a less trivial sense.
And there are even more interesting cases, like λx. λy. x y.

But what function does a term like λx. x represent? Intuitively, it’s the identity function, but over
what domain and codomain? We might think of it as representing the set of all identity functions, but
this interpretation quickly leads to Russell’s paradox. In fact, defining a precise mathematical model for
lambda-calculus terms is far from straightforward, requiring some sophisticated domain theory.

One possible meaning of a term is divergence. There are infinitely many divergent terms; one example is Ω.
In some sense, all divergent terms are equivalent, since none of them produce a value. The implication is that
it is undecidable to determine whether two terms are equivalent, because otherwise, given the relationship
between the λ-calculus and Turing machines, we could solve the halting problem on lambda calculus terms
by testing equivalence to Ω.

1.1 Observational equivalence

Another way of approaching the problem is to say that two terms are equivalent if they behave indistin-
guishably in all possible contexts.

More precisely, two terms will be considered equal if in every context, either

• they both converge and produce the same value, or

• they both diverge.

A context is just a term C[·] with a single occurrence of a distinguished special variable, called the hole.
The notation C[e] denotes the context C[·] with the hole replaced by the term e. Then we then define
equality in the following way:

e1 = e2 ⇐⇒ for all contexts C[·], C[e1] ⇓ v iff C[e2] ⇓ v.

Without loss of generality, we can simplify the definition to

e1 = e2 ⇐⇒ for all contexts C[·], C[e1] ⇓ iff C[e2] ⇓,

because if they converge to different values, it is possible to devise a context that causes one to converge and
the other to diverge. Suppose that C[e1] ⇓ v1 and C[e2] ⇓ v2, where v1 and v2 have different behavior. Then
we can find some context C ′[·] which applies to v1 converges, and applied to v2 diverges. Therefore, the
context C ′[C[·]] is a context that causes the original e1, e2 to converge and diverge respectively, satisfying
the simpler definition.

A conservative approximation (but unfortunately still undecidable) is the following. Let e1 and e2 be
terms, and suppose that e1 and e2 converge to the same value when reductions are applied according to
some strategy. Then e1 is equivalent to e2. This normalization approach (in which terms are reduced to a a
normal form on which no more reductions can be done) is useful for compiler optimization and for checking
type equality in some advanced type systems.

1

2 Rewrite Rules

2.1 Recap—β-reduction

Recall that β-reduction is the following rule:

(λx. e)e′ β−→ e{e′/x}.

An instance of the left-hand side is called a redex and the corresponding instance of the right-hand side is
called the contractum. For example,

λx. (λy.y)x︸ ︷︷ ︸
β redex

β−→ λx.x

Note that in CBV, λx. (λy. y) x is a value (we cannot apply a β-reduction inside the body of an abstraction)
so we cannot apply this reduction.

2.2 Capture-avoiding substitution

CBN and CBV evaluation reduce β redexes (λx. e) e′ only when the RHS e′ is a closed term. In general we
can try to normalize lambda terms by reducing redexes inside lambda abstractions, because the reductions
should still preserve the equivalence of the terms. However, in this case the term e′ may be an open term
containing free variables. Substituting e′ into e may cause variable capture. For example, consider the
substitution (y (λx. x y)){x/y}. If we replace all the unbound y’s with x, we’ll get x (λx. x x).

In fact, this is a problem seen in many other mathematical contexts, such as in integral calculus, because
like λ, the integral operator is a binder. For example, consider the following naive attempt to evaluate an
integral, with a similar variable capture problem:

∫ x

0

dy · (1 +
∫

dx · x) = (y +
∫

dx · yx)
∣∣∣∣y=x

y=0

= (x +
∫

x2 dx)− 0 = (x +
∫

x2 dx)

We write e1{e2/x} to denote the result of substituting e2 for all free occurrences of x in e1 according to
the following rules:

x{e/x} = e
y{e/x} = y where y 6= x

(e1 e2){e/x} = e1{e/x} · e2{e/x}
(λx. e0){e1/x} = λx. e0

(λy. e0){e1/x} = λy. e0{e1/x} where y 6= x and y 6∈ FV(e1)
(λy. e0){e1/x} = λz. e0{z/y}{e1/x} where y 6= x, z 6= x, z 6∈ FV(e0), and z 6∈ FV(e1).

Note that the rules are applied inductively. That is, the result of a substitution in a compound term is
defined in terms of substitutions on its subterms. The very last of the six rules applies when y ∈ FV(e1). In
this case we can rename the bound variable y to z to avoid capture of the free occurrence of y. One might
well ask: But what if y occurs free in the scope of a λz in e0? Wouldn’t the z then be captured? The answer
is that it will be taken care of in the same way, but inductively on a smaller term.

Despite the importance of substitution, it was not until the mid-1950’s that a completely satisfactory
definition of substitution was given, by Haskell Curry. Previous mathematicians, from Newton to Hilbert to
Church, worked with incomplete or incorrect definitions. It is the last of the rules above that is hard to get
right.

In the pure λ-calculus, we can start with a λ-term and perform β-reductions on subterms in any order,
using the full substitution rule avoid to avoid variable capture when the substituted term is open.

2

2.3 α-reduction

In λx. x z the name of the bound variable x doesn’t really matter. This term is semantically the same
as λy. y z. A renaming like this is known as an α-reduction, α-conversion, or just α-renaming. In an α-
reduction, the new bound variable must be chosen so as to avoid capture. If a term α-reduces to another
term, then the two terms are said to be α-equivalent. This defines an equivalence relation on the set of terms,
denoted e1 =α e2.

Recall the definition of free variables FV(e) of a term e. In general we have

λx.e =α λy.e{y/x} if y /∈ FV (e).

The proviso y /∈ FV (e) is to avoid the capture of a free occurrences of y in e as a result of the renaming.
When writing a λ-interpreter, the job of looking for α-renamings doesn’t seem all that practical. However,

we can use them to improve our earlier definition of equality:

If e1 ⇓ v1, e2 ⇓ v2, and v1 =α v2, then e1 = e2.

2.4 Stoy diagrams

We can create a Stoy diagram (after Joseph Stoy) for a closed term in the following manner. Instead of
writing a term with variable names, we write dots to represent the variables and connect variables with the
same binding with edges. Then α-equivalent terms have the same Stoy-diagram. For example, the term
λx. (λy. (λx. x y) x) x has the following Stoy diagram:

λ•.(λ•.(λ•.• •) •) •

Another way to formalize the lambda calculus is to define its terms as the equivalence classes of the
syntactic terms given, with respect to the α-equivalence relation. (The equivalence classes of a set are just
the subsets that are equivalent with respect to some equivalence relation.) Since all terms in the equivalence
class have the same Stoy diagram, we can understand the terms as Stoy diagrams, and the reductions as
operating on these diagrams. This approach is often taken in theoretical programming language work, even
when the presentation appears to be using explicit variable names. A related approach is to represent
variables using de Bruijn indices, which replace variables with natural numbers that indicate the binding
site.

2.5 η-reduction

Here is another notion of equality. Compare the terms e and λx. e x. If these two terms are both applied to
an argument e′, then they will both reduce to e e′, provided x has no free occurrence in e. Formally,

(λx.e1x)e2
β−→ e1e2 if x /∈ FV (e1).

This says that e and λx. e x behave the same way as functions and should be considered equal. Another
way of stating this is that e and λx. e x behave the same way in all contexts of the form [·] e′.

This gives rise to the rule for η-reduction:

λx. e x
η−→ e if x /∈ FV (e).

The η rule may not be sound with respect to our earlier notion of equality, depending on our reduction
strategy. For example, λx. e x is a value in CBV, but reductions might be possible in e and it might diverge.

The reverse operation, called η-expansion, can be useful as well. In practice, η-expansion is used to delay
divergence by trapping expressions inside λ abstraction terms.

3

3 Confluence

In the classical λ-calculus, no reduction strategy is specified, and no restrictions are placed on the order of
reductions. Any redex may be chosen to be reduced next. A λ-term in general may have many redexes,
so the process is nondeterministic. We can think of a reduction strategy as a mechanism for resolving the
nondeterminism, but in the classical λ-calculus, no such strategy is specified. A value in this case is just a
term containing no redexes. Such a term is said to be in normal form.

This makes it very difficult to define equality. One sequence of reductions may terminate, but another
may not. It is even conceivable that different terminating reduction sequences result in different values.
Luckily, it turns out that the latter cannot happen.

It turns out that the λ-calculus is confluent (also known as the Church–Rosser property) under α- and
β-reductions. Confluence says that if e reduces by some sequence of reductions to e1, and if e also reduces
by some other sequence of reductions to e2, then there exists an e3 such that both e1 and e2 reduce to e3.

e1

↗ ↘
e e3

↘ ↗
e2

It follows that up to α-equivalence, normal forms are unique. For if e ⇓ v1 and e ⇓ v2, and if v1 and
v2 are in normal form, then by confluence they must be α-equivalent. Moreover, regardless of the order of
previous reductions, it is always possible to get to the unique normal form if it exists.

However, note that it is still possible for a reduction sequence not to terminate, even if the term has a
normal form. For example, (λx. λy. y)Ω has a nonterminating CBV reduction sequence

(λxy.y)Ω
β−→ (λxy.y)Ω

β−→ · · ·

but a terminating CBN reduction sequence, namely

(λx. λy. y)Ω
β−→ λy. y.

It may be difficult to determine the most efficient way to expedite termination. But even if we get stuck in a
loop, the Church–Rosser theorem guarantees that it is always possible to get unstuck, provided the normal
form exists.

In normal order, the leftmost redex is always reduced first. This strategy is also called normal order.
This is closely related to CBN evaluation, but also reduces inside lambdas. Like CBN, it finds a normal form
if one exists, albeit not necessarily in the most efficient way. Call-by-value (CBV) is correspondingly related
to applicative order, where arguments are reduced first.

In C, the order of evaluation of arguments is not defined by the language; it is implementation-specific.
Because of this, and the fact that C has side effects, C is not confluent. For example, the value of the
expression (x = 1) + x is 2 if the left operand of + is evaluated first, x + 1 if the right operand is evaluated
first. This makes writing correct C programs more challenging!

The absence of confluence in concurrent imperative languages is why concurrent programming is difficult.
In the lambda calculus, confluence guarantees that reduction can be done in parallel without fear of changing
the result.

4

