
CS611 Lecture 33 Testing Equality and Subtyping of Recursive Types 27 November 2006
Lecturer: Dexter Kozen

1 Equirecursive Equality

In the equirecursive view of recursive types, types are regular labeled trees, possibly infinite. However, we
still represent them by finite type expressions involving the fixpoint operator µ. There can be many type
expressions representing the same type; for example, µα. 1 → α and µα. 1 → 1 → α. This raises the question:
given two finite type expressions σ and τ , how do we tell whether they represent the same type?

In the isorecursive view, the finite type expressions σ and τ themselves are the types, and there are no
infinite types. In this case, the question does not arise.

One might conjecture that two type expressions are equivalent (that is, represent the same type) iff they are
provably so using ordinary equational logic with the unfolding rule µα. τ = τ {µα. τ/α} and the usual laws
of equality (reflexivity, symmetry, transitivity, congruence). But this would not be correct. To see why, let
us formulate the problem more carefully.

Suppose we have type expressions σ, τ, . . . over variables α, β, . . . defined by the grammar

τ ::= 1 | σ → τ | α | µα. τ,

where τ is not a variable in µα. τ . Let [[σ]] be the type denoted by σ. This is a possibly infinite regular
labeled tree obtained from σ by “unfolding” all µ-subexpressions.

Write ` σ = τ if the equality of σ and τ can be proved from the following axioms and rules:

` µα. τ = τ {µα. τ/α} ` τ = τ

` σ = τ

` τ = σ

` σ = τ ` τ = ρ

` σ = ρ

` σ1 = σ2 ` τ1 = τ2

` σ1 → τ1 = σ2 → τ2

These rules generate the smallest congruence relation on type expressions satisfying the unfolding rule
µα. τ = τ {µα. τ/α}. One can show inductively that if ` σ = τ , then [[σ]] = [[τ]], so the rules are sound.
However, they are not complete. If we define

τ0
4
= µα. 1 → 1 → α τn+1

4
= 1 → τn, n ≥ 0, (1)

then ` τ2m = τ2n and ` τ2m+1 = τ2n+1 for any m and n, but not ` τn = τn+1.

2 A Dangerous Proof System

The following proof system is sound and complete for type equivalence, but great care must be taken, because
the system is fragile in a sense to be explained. Judgements are sequents of the form E ` σ = τ , where E is
a set of type equations.

E, σ = τ ` σ = τ E ` 1 = 1

E, µα. σ = τ ` σ{µα. σ/α} = τ

E ` µα. σ = τ

E ` σ = τ

E ` τ = σ

E ` σ1 = σ2 E ` τ1 = τ2

E ` σ1 → τ1 = σ2 → τ2

For example, here is a proof in this system of ` τ0 = τ1 as defined in (1):

1

τ0 = 1 → τ0 ` 1 = 1 τ0 = 1 → τ0 ` τ0 = 1 → τ0

τ0 = 1 → τ0 ` 1 → τ0 = 1 → 1 → τ0

τ0 = 1 → τ0 ` 1 → 1 → τ0 = 1 → τ0

` τ0 = 1 → τ0

The rule for unfolding is quite unusual. Note that the very equation we are trying to prove in the conclusion
appears as an assumption in the premise! This makes the system fragile. In fact, it breaks if we add a
transitivity rule

E ` σ = τ E ` τ = ρ

E ` σ = ρ
.

On the surface, the transitivity rule seems quite harmless, and it seems like couldn’t hurt to add it to our
system. However, with the addition of this rule, the system becomes unsound. Here is a proof of the false
statement ` 1 = 1 → 1:

µα. 1 = 1 ` 1 = 1
` µα. 1 = 1
` 1 = µα. 1

µα. 1 = 1 → 1, µα. 1 = 1 ` 1 = 1
µα. 1 = 1 → 1 ` µα. 1 = 1
µα. 1 = 1 → 1 ` 1 = µα. 1 µα. 1 = 1 → 1 ` µα. 1 = 1 → 1

µα. 1 = 1 → 1 ` 1 = 1 → 1
` µα. 1 = 1 → 1

` 1 = 1 → 1

It is also essential that we explicitly rule out µα. α; otherwise we would have

µα. α = τ ` µα. α = τ

` µα. α = τ

for any τ .

3 Types as Labeled Trees

A more revealing view of the proof system given above is the coinductive view, in which we try to find
witnesses to the inequivalence of two types. The idea is that if [[σ]] 6= [[τ]], then there is a witness to that
fact in the form of a common finite path from the roots of [[σ]] and [[τ]] down to some point where the labels
differ. Moreover, one can calculate a bound b on the length of such a witness if it exists. The bound is
quadratic in the sizes of σ and τ . This gives an algorithm for checking equivalence: unfold the trees down
to depth b, and search for a witness; if none is found, then none exists.

This algorithm is still exponential in the worst case. One can do better using an automata-theoretic approach.
We build deterministic automata out of σ and τ and look for an input string on which they differ. This will
give an algorithm whose worst-case running time is proportional to |σ | · |τ |.

Let {L,R}∗ be the set of finite-length strings over {L,R} (L=“left”, R=“right”). We model (possibly
infinite) types as partial functions T : {L,R}∗ ⇀ {1,→} such that

• the domain of T is nonempty and prefix closed (thus the empty string ε is always in the domain of T ;
this is called the root);

• if T (x) =→, then both xL and xR are in dom T ;

• if T (x) = 1, then neither xL nor xR is in dom T ; thus x is a leaf.

2

We restrict our attention to the constructors →, 1; we could add more if we wanted to, but these suffice for
the purpose of illustration.

A path in T is a maximal subset of dom T linearly ordered by the prefix relation. Paths can be finite or
infinite. A finite path ends in a leaf x, thus T (x) = 1 and T (y) =→ for all proper prefixes y of x. An infinite
path has T (x) =→ for all elements x along the path.

Let T be a type and x ∈ {L,R}∗. Define the partial function Tx : {L,R}∗ ⇀ {1,→} by

Tx(y)
4
= T (xy).

If Tx has nonempty domain, then it is a type. Intuitively, it is the subexpression of T at position x.

A type T is finite if its domain dom T is a finite set. By König’s Lemma, a type is finite iff it has no infinite
paths. A type T is regular if {Tx | x ∈ {L,R}∗} is a finite set.

4 Term Automata

Types can be represented by a special class of automata called term automata. These can be defined over
any signature, but for our application, we consider only term automata over {→, 1}. A term automaton over
this signature consists of

• a set of states Q;

• a start state s ∈ Q;

• a partial function δ : Q× {L,R} ⇀ Q called the transition function; and

• a (total) labeling function ` : Q → {→, 1},

such that for any state q ∈ Q,

• if `(q) =→, then both δ(q, L) and δ(q, R) are defined; and

• if `(q) = 1, then both δ(q, L) and δ(q, R) are undefined.

The partial function δ extends naturally to a partial function δ̂ : Q× {L,R}∗ → Q inductively as follows:

δ̂(q, ε)
4
= q δ̂(q, xa)

4
= δ(δ̂(q, x), a).

For any q ∈ Q, the domain of the partial function λx. δ̂(q, x) is nonempty (it always contains ε) and prefix-
closed. Moreover, the partial function λx. `(δ̂(q, x)) is a type. The type represented by M is the type

[[M]]
4
= λx. `(δ̂(s, x)),

where s is the start state.

Intuitively, [[M]](x) is determined by starting in the start state s and scanning the input x, following
transitions of M as far as possible. If it is not possible to scan all of x because some transition along the
way does not exist, then [[M]](x) is undefined. If on the other hand M scans the entire input x and ends up
in state q, then [[M]](x) = `(q).

One can show that a type T is regular iff T = [[M]] for some term automaton M with finitely many states.
This is also equivalent to being [[τ]] for some finite type expression τ . To construct a term automaton Mτ

from a closed finite type expression τ , take the set of states of Mτ to be the smallest set Q such that

3

• τ ∈ Q;

• if σ → ρ ∈ Q, then σ ∈ Q and ρ ∈ Q; and

• if µα. σ ∈ Q, then σ{µα. σ/α} ∈ Q.

The set Q so defined is finite. The start state is τ . The transition function is given by the following rules:

• δ(σ → ρ, L)
4
= σ;

• δ(σ → ρ,R)
4
= ρ;

• δ(1, D) is undefined, D ∈ {L,R};

• δ(µα. σ,D)
4
= δ(σ{µα. σ/α}, D), D ∈ {L,R}.

(The restriction that µα. σ is not a variable is crucial here.) The labeling function is given by:

• `(σ → ρ)
4
=→

• `(1)
4
= 1

• `(µα. σ)
4
= `(σ{µα. σ/α}).

Then [[τ]] = [[Mτ]].

For those with an interest in such things, term automata are exactly the coalgebras of signature {→, 1}
over the category of sets. The map M 7→ [[M]] is the unique morphism from the coalgebra M to the final
coalgebra, which consists of the finite and infinite types.

5 A Coinductive Algorithm for Type Equivalence

Now given pair σ, τ of finite type expressions, [[σ]] = [[τ]] iff for all x ∈ {L,R}∗, [[σ]](x) = [[τ]](x); equivalently,
[[σ]] 6= [[τ]] iff there exists x ∈ dom [[σ]] ∩ dom [[τ]] such that [[σ]](x) 6= [[τ]](x). Form the two term automata
Mσ = (Qσ, δσ, `σ, sσ) and Mτ = (Qτ , δτ , `τ , sτ). Then form the product automaton Mσ × Mτ with
states Qσ×Qτ , transition function λ((p, q), D). (δσ(p, D), δτ (q, D)), start state (sσ, sτ), and labeling function
λ(p, q). (`σ(p), `τ (q)). The product automaton runs the two automata Mσ and Mτ in parallel on the same
input data. Then [[Mσ]] 6= [[Mτ]] iff there exists an input string x ∈ {L,R} that causes the product automaton
to move from its start state to a state (p, q) such that `σ(p) 6= `τ (q). This can be determined by depth-first
search in time linear in |Mσ×Mτ |, which is roughly |Mσ | · |Mτ |. This give a quadratic algorithm for testing
type equivalence.

6 Subtyping

In this section we indicate how to extend the algorithm to handle equirecursive subtyping. Here we take
types to be finite and infinite terms over the ranked alphabet Σ = {⊥,→,>, 1}, where → is binary and ⊥,
>, 1 are constants. The type ⊥ is supposed to be a subtype of all types and the type > is supposed to be a
supertype of all types.

The finite types are ordered naturally by the binary relation ≤FIN defined inductively by

4

(i) ⊥ ≤FIN τ ≤FIN > for all finite τ ;

(ii) if σ′ ≤FIN σ and τ ≤FIN τ ′ then σ → τ ≤FIN σ′ → τ ′.

Note that the converse of (ii) holds as well. This relation captures the natural type inclusion order in that
it is covariant in the range and contravariant in the domain of a function type.

In order to handle recursive types, we need to extend the ordering ≤FIN to infinite types in a natural way.
One natural definition involves infinite sequences of finite approximations. Here we use an equivalent and
simpler definition that does not involve approximations.

The parity of a string x ∈ {L,R}∗, denoted πx, is the number mod 2 of L’s in x. A string x is said to be
even if πx = 0 and odd if πx = 1.

Let ≤0 and ≤1 be the following two partial orders on Σ:

⊥ ≤0 → ≤0 > > ≤1 → ≤1 ⊥
⊥ ≤0 1 ≤0 > > ≤1 1 ≤1 ⊥.

Note that ≤0 and ≤1 are reverses of each other. For types σ, τ , define σ ≤ τ if σ(x) ≤πx τ(x) for all
x ∈ dom σ ∩ dom τ .

One can show without much difficulty that the relation ≤ is a partial order on types and agrees with ≤FIN

on the finite types. In particular, for any σ, τ , σ′, τ ′,

(i) ⊥ ≤ τ ≤ >

(ii) τ ≤ ⊥ if and only if τ = ⊥

(iii) > ≤ τ if and only if τ = >

(iv) σ → τ ≤ σ′ → τ ′ if and only if σ′ ≤ σ and τ ≤ τ ′.

7 An Algorithm

To decide whether [[σ]] ≤ [[τ]] for two given type expressions σ and τ , we proceed as in Section 4. We first
construct the term automata Mσ and Mτ , then form their product; however, we also include one extra bit of
information in the state to record the parity of the path scanned so far. This is to account for contravariance
of function types in their domain.

Recall that [[σ]] ≤ [[τ]] iff [[σ]](x) ≤πx [[τ]](x) for all x ∈ dom [[σ]] ∩ dom [[τ]]. Equivalently, [[σ]] 6≤ [[τ]] iff the
set

{x ∈ dom [[σ]] ∩ dom [[τ]] | [[σ]](x) 6≤πx [[τ]](x)}

is nonempty. This is a regular subset of {L,R}∗, as it is the set accepted by the finite-state automaton

(Q, {L, R}, s, δ, F)

where

• Q
4
= Qσ ×Qτ × {0, 1} are the states;

• s
4
= (sσ, sτ , 0) is the start state;

5

• δ : Q× {L, R} → Q is the partial function which for b ∈ {0, 1}, D ∈ {L,R}, p ∈ Qσ, and q ∈ Qτ gives

δ((p, q, b), D)
4
= (δσ(p, D), δτ (q, D), b⊕ πD)

where ⊕ denotes mod 2 sum;

• F
4
= {(p, q, b) | `σ(p) 6≤b `τ (q)} is the set of accept states.

Then δ((p, q, b), D) is defined if and only if `σ(p) = `τ (q) = →. The automaton is nondeterministic only in
that the state (p, q, b) has no D-successors if either `σ(p) or `τ (q) ∈ {⊥,>, 1}. If `σ(p) = `τ (q) = →, then
the D-successor of (p, q, b) is defined and is unique.

Now to decide whether [[σ]] ≤ [[τ]], we construct the automaton and ask whether it accepts a nonempty set,
that is, whether there exists a path from the start state to some final state. This can be determined in linear
time in the size of the automaton using depth first search.

The automaton has 2 · |Qσ | · |Qτ | states and at most two transition edges from each state. Thus the entire
algorithm takes no more than O(|σ |·|τ |) time, where |σ | and |τ | are the sizes of the original type expressions
representing the regular terms [[σ]] and [[τ]].

6

