
CS611 Lecture 32 Recursive Types 22 November 2006
Lecturer: Dexter Kozen

1 Introduction

Many programming languages have the ability to define recursive data types. For example, suppose we want
to define binary trees with integer data at the nodes. In Java we can write

class Tree {
Tree leftChild, rightChild;
int data;

}

A binary tree is an object of this class. In ML we can write

datatype tree = Leaf | Node of tree * tree * int

These types are recursive because they are defined in terms of themselves.
In the typed λ-calculus, we do not yet have any mechanism to define recursive types. We would like the

type tree to satisfy

tree = 1 + tree ∗ tree ∗ int, (1)

where 1 (aka unit) represents the empty tree; in other words, we would like tree to be a solution of the
equation

α = 1 + α ∗ α ∗ int. (2)

However, no such solution exists among the types we have seen so far.
How might we augment our set of types to include solutions to recursive type equations such as (2)?

There are two basic approaches, called the equirecursive and isorecursive approach, respectively.

2 Recursive Types as Regular Labeled Trees—The Equirecursive View

By unwinding (2), we can see that

α = 1 + α ∗ α ∗ int

= 1 + (1 + α ∗ α ∗ int) ∗ (1 + α ∗ α ∗ int) ∗ int

= 1 + (1 + (1 + α ∗ α ∗ int) ∗ (1 + α ∗ α ∗ int) ∗ int) ∗ (1 + (1 + α ∗ α ∗ int) ∗ (1 + α ∗ α ∗ int) ∗ int) ∗ int

= · · ·

At each level, we have a finite type with the type variable α appearing at some of the leaves, and we obtain
the next level by substituting the right-hand side of (2) for α. This gives a sequence of deeper and deeper
finite trees, where each successive tree is a substitution instance of the previous tree.

If we take the limit of this process, we have an infinite tree. We can think of this as an infinite labeled
graph whose nodes are labeled with the type constructors *, +, int, and 1. This is very much like an ordinary
type expression, except that it is infinite. There are no more α’s, because we have substituted for all of them
all the way down. This infinite tree is a solution of (2), and this is what we take as the type tree.

In general, let Σ be a signature consisting of several type constructors of various arities. For example,
Σ might consist of the type constructors →, *, +, 1, and int. We can form the set of (finite) types over Σ
inductively in the usual way. Each such type can be regarded as a finite labeled tree. For example, the type
int→ int→ int can be viewed as the labeled tree

int

int

int

→

→

@@

@@

��

��

1

Now let us add some infinite types. These are infinite labeled trees that respect the arities of the
constructors in Σ; that is, if the constructor is binary (such as * or→), any node labeled with that constructor
must have exactly two children; and if the constructor is nullary, such at 1, then any node labeled with that
symbol must be a leaf. Within these constraints, the tree may be infinite.

A (finite or infinite) expression with only finitely many subexpressions up to isomorphism is called regular.
For example, the infinite type

int

int

int

. . .

→

→

→

@@

@@

@@

��

��

��

is regular, since it has only two subexpressions up to isomorphism, namely itself and int. The limit of the
unwinding of (2) above, which we took to be the type tree, is also regular; it has exactly five subexpressions
up to isomorphism, namely tree, 1, tree * tree * int, tree * tree, and int.

Regular trees are all we need to provide solutions to finite systems of type equations of the form (2).
Suppose we have n type equations in n variables:

α1 = τ1

... (3)
αn = τn,

where each τi is a finite type over the type constructors Σ and type variables α1, . . . , αn. This system has a
solution σ1, . . . , σn in which each σi is a regular tree. Moreover, if no right-hand side is a variable, then the
solution is unique.

2.1 The µ Constructor

We can specify the infinite solutions to systems of type equations (3) using a finite syntax involving a new
type constructor µ, the fixpoint type constructor. If we have an equation α = τ such that the right-hand
side is not α, then there is a unique solution, which is a finite or infinite regular tree. The solution will be
infinite if α occurs in τ and will be finite (in fact it will just be τ) if α does not occur in τ . We denote this
unique solution by µα. τ .

Syntactically, µ acts as a binding operator in type expressions as λ does in λ-terms, with the same notions
of scope, free and bound variables, α-conversion, and safe substitution.

Since µα. τ is a solution to α = τ , we have

µα. τ = τ {µα. τ/α}. (4)

For example, to get a tree type satisfying (1), we can define

tree
4
= µα. 1 + α ∗ α ∗ int.

The desired equation (1) is just (4) for this case.
The solutions σ1, . . . , σn to any finite system of the form (3) can be expressed in terms of µ. For example,

suppose τ1 and τ2 are finite type expressions over the type variables α1, α2 such that neither τ1 nor τ2 is a
variable. The system

α1 = τ1 α2 = τ2

has a unique solution σ1, σ2 specified by

σ1 = µα1. (τ1 {µα2. τ2/α2}) σ2 = µα2. (τ2 {µα1. τ1/α1}).

Mutually recursive type declarations arise quite often in practice. For example, consider the following
Java class definitions for Node and Edge:

2

class Node {
Edge[] inEdges, outEdges;

}

class Edge {
Node source, sink;

}

Note that Node refers to Edge and vice versa. So we must take a mutual fixpoint when assigning types.

2.2 Typing Rules

In the equirecursive view, since µα. τ = τ {µα. τ/α}, the typing rules are quite simple:

(µ-intro)
Γ ` e : τ {µα. τ/α}

Γ ` e : µα. τ
(µ-elim)

Γ ` e : µα. τ

Γ ` e : τ {µα. τ/α}

Equivalently, we can just allow substitution of equals for equals in type expressions.

3 Folding and Unfolding—The Isorecursive View

There is another approach to recursive types, the isorecursive approach. Here we do not have any infinite
types, but rather the expression µα. τ is itself a type. In this approach, µα. τ and τ {µα. τ/α} are considered
different (but isomorphic) types.

The step of substituting µα. τ for α in τ is called unfolding, and the reverse operation is called folding.
The conversion of elements between these two types is accomplished by explicit fold and unfold operations.

unfoldµα. τ : µα. τ → τ {µα. τ/α}
foldµα. τ : τ {µα. τ/α} → µα. τ

(we suppress the subscripts when there is no ambiguity). In this view, the equality symbol in (4) is not
really an equality, but just an isomorphism.

3.1 Typing Rules

In the isorecursive view, the typing rules consist of a pair of introduction and elimination rules for µ-types
that explicitly mention fold and unfold:

(µ-intro)
Γ ` e : τ {µα. τ/α}
Γ ` fold e : µα. τ

(µ-elim)
Γ ` e : µα. τ

Γ ` unfold e : τ {µα. τ/α}

3.2 Structural Operational Semantics

In the isorecursive view, we also need to augment the operational semantics. We only need one rule:

unfold (fold e) → e.

Intuitively, to access data in a recursive type µα. τ , we need to unfold it first; but the only way that values
of type µα. τ could have been created in the first place is via a fold.

3.3 An Example

Suppose we want to write a program to add a list of numbers. The list type is a recursive type, which we
can define as

intlist
4
= µα. 1 + int ∗ α.

3

The type 1 (aka unit) represents the empty list. It has a single inhabitant null. The other case is for a
nonempty list consisting of a head, which is an int, followed by the tail of the list, which is an intlist; that is,
int * intlist.

Now we can write a function sum to add up an intlist. This will be a recursive function, so we will need
to take a fixpoint.

let sum = rec f : intlist→ int. λ` : intlist. . . . in . . .

In the body of this function, we would like to do a case on the intlist `. But to do a case, we need a sum
type, and ` is a µ-type, so we will have to unfold it first. (ML does this automatically when it sees a case.)
So the body would be

case unfold ` : 1 + int ∗ intlist of
λu : 1. 0
| λp : int ∗ intlist. (#1 p) + f (#2 p)

This is just the same code that you would write in ML, except we have broken out some of the things
that ML hides for you. In particular, we have explicitly shown the recursion in the definition of the intlist
type and the unfold that is needed to get the exploded view of the type.

4 Equirecursive vs. Isorecursive

Programming languages deal with recursive types in different ways. Java and Modula-3 take the equirecursive
approach, in which the folded and unfolded types are considered equal, and the fold/unfold operations are
just the identity functions. Recursive types and their unfoldings are fully substitutable for each other.

class E {
String x;
E e;
public String toString() {

return e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.x;
}

}

On the other hand, ML, CLU, and C use isorecursive types, in which µα. τ and τ {µα. τ/α} are considered
different (but isomorphic) types, and the casting operators fold and unfold are required to go between them.
CLU uses up and down instead of fold and unfold. In ML, the unfold operator is performed automatically
and implicitly by the case and let statements and the pattern-matching mechanism. The type constructors
in a recursive datatype definition, when applied as functions, act as fold operations.

- datatype tree = Leaf | Node of tree * tree * int;
datatype tree = Leaf | Node of tree * tree * int
- Node (Leaf,Leaf,4); (← here we are applying Node and Leaf as functions)
val it = Node (Leaf,Leaf,4) : tree

5 Numbers as a Recursive Type

We started with primitive types 1, boolean, and int. We have already seen that the type boolean can be
represented as 1 + 1 with values false and true represented by inL null and inR null, respectively.

Now that we have recursive types, we no longer need to take int as primitive, but we can define it as a
recursive type. A natural number is either 0 or a successor of a natural number. Thus we can take

nat
4
= µα. 1 + α 0

4
= fold (inL null) 1

4
= fold (inR 0) 2

4
= fold (inR 1),

and so on. Here fold = foldnat, inL = inL1+nat, and inR = inR1+nat.

4

We can use the recursive type nat to code up all of the usual arithmetic, and all these operations are
well-typed. For example, the successor function would be

(λx : nat. fold (inR x)) : nat→ nat.

So all we really need as primitive types and type constructors are 1 (unit), recursive types, products, and
sums. With these we can build all the other types like natural numbers, integers, lists, trees, floating point
numbers, and so on.

6 Self-Application and Ω

Recall the paradoxical combinator Ω defined by

ω
4
= λx. xx Ω

4
= ω ω.

We can now give these terms recursive types, provided we insert some folding and unfolding. Since x is
applied as a function, it must have some kind of function type, say σ → τ . But since it is applied to itself as
an argument, it must also have type σ. This seems to indicate that the type of x must satisfy the equation
σ = σ → τ . The recursive type µα. (α→ τ) appears to be in order (here τ can be anything).

To actually apply x to x, we have to unfold it. The type of unfold x is

unfold x : (µα. (α→ τ)) → τ.

This is a function with domain µα. (α→ τ), which is the type of x, so we can apply it to x. The type of the
result (unfold x) x is τ . Thus the fully typed ω term is

ω
4
= (λx : µα. (α→ τ). (unfold x) x) : (µα. (α→ τ))→ τ.

If we now fold this, we get

fold ω : µα. (α→ τ).

Therefore, we can apply ω as a function to fold ω, and the result is

ω (fold ω) : τ.

This is the same as the original Ω term, but with explicit folding and unfolding.
We can do this in ML:

- datatype U = Fold of U → U;
datatype U = Fold of U → U
- val omega = fn x ⇒ case x of Fold f ⇒ f x;
val omega = fn : U → U
- val Omega = omega (Fold omega);

(and at this point it just sits there forever until you hit control-c)

Interrupt
-

So we were finally able to introduce nontermination. But the point is that it passed typechecking, so the
program was well-typed.

5

7 Untyped to Typed λ-Calculus

In fact, with recursive types, we can type everything in the pure untyped λ-calculus. Every λ-term can be
applied as a function to any other λ-term, so every λ-term (with appropriate folds and unfolds inserted) has

type U
4
= µα. α→ α. The translation is

D[[x]]
4
= x

D[[e0 e1]]
4
= (unfold D[[e0]]) D[[e1]]

D[[λx. e]]
4
= fold λx : U.D[[e]].

Note that every untyped term maps to a term of type U .

6

