
CS611 Lecture 31 Subtype Polymorphism 20 November 2006
Lecturer: Dexter Kozen

1 Introduction

In this lecture, we attempt to extend the typed λ-calculus to support objects. In particular, we explore the
concept of subtyping in detail, which is one of the key features of object-oriented languages.

Subtyping was first introduced in Simula, the first object-oriented programming language. Its inventors
Ole-Johan Dahl and Kristen Nygaard later went on to win the Turing award for their contribution to the
field of object-oriented programming. Simula introduced a number of innovative features that have become
the mainstay of modern OO languages including objects, subtyping and inheritance.

The concept of subtyping is closely tied to inheritance and polymorphism and offers a formal way of
studying them. It is best illustrated by means of an example.
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Figure 1: A Subtype Hierarchy

This is an example of a hierarchy that describes a subtype relationship between different types. In this
case, the types Student and Staff are both subtypes of Person. Alternatively, one can say that Person is a
supertype of Student and Staff. Similarly, TA is a subtype of the Student and Person types, and so on. The
subtype relationship is normally a preorder (reflexive and transitive) on types.

A subtype relationship can also be viewed in terms of subsets. If σ is a subtype of τ , then all elements
of type σ are automatically elements of type τ .

The ≤ symbol is typically used to denote the subtype relationship. Thus, Staff ≤ Person, RA ≤ Student,
etc. Sometimes the symbol <: is used, but we will stick with ≤.

2 Basic Subtyping Rules

Formally, we write σ ≤ τ to indicate that σ is a subtype of τ . In denotational semantics, this is equivalent
to saying [[σ ]] ⊆ [[τ ]]. The informal interpretation of this subtype relation is that anything of type σ can be
used in a context that expects something of type τ . This is known as the subsumption rule:

Γ ` e : σ σ ≤ τ

Γ ` e : τ
.

Two further general rules are:

τ ≤ τ
σ ≤ τ τ ≤ ρ

σ ≤ ρ

which say that ≤ is reflexive and transitive, respectively, thus a preorder. In many cases, antisymmetry
holds as well, making the subtyping relation a partial order, but this is not always true.

The subtyping rules governing the types 1 and 0 are interesting:
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• 1 (unit): Every type is a subtype of 1, that is, τ ≤ 1 for all types τ , thus 1 is the top type. If a context
expects something of type 1, then it can accept any type. In Java, this is equivalent to the type Object.

• 0 (void): Every type is a supertype of 0, i.e., 0 ≤ τ for all types τ , thus 0 is the bottom type. The type
0 can be accepted by any context in lieu of any other type. In Java, this is equivalent to the Null type.

3 Subtyping Rules for Product and Sum Types

The subtyping rules for product and sum types are quite intuitive:

σ ≤ σ′ τ ≤ τ ′

σ ∗ τ ≤ σ′ ∗ τ ′
σ ≤ σ′ τ ≤ τ ′

σ + τ ≤ σ′ + τ ′

These rules say that the product and sum type constructors are monotone with respect to the subtype
relation.

4 Subtyping Rules for Records

Recall our extensions to the grammar of e and τ for adding support for records types:

e ::= · · · | {x1 = e1, . . . , xn = en} | e.x

τ ::= · · · | {x1 : τ1, . . . , xn : τn}.

We also had the following rule added to the small-step semantics:

{x1 = v1, . . . , xn = vn}.xi → vi

and the following typing rules:

Γ ` ei : τi, 1 ≤ i ≤ n

Γ ` {x1 = e1, . . . , xn = en} : {x1 : τ1, . . . , xn : τn}
Γ ` e : {x1 : τ1, . . . , xn : τn}

Γ ` e.xi : τi

There are two subtyping rules for records:

• Depth subtyping: this defines the subtyping relation between two records that have the same number
of fields.

σ1 ≤ τ1, σ2 ≤ τ2, . . . , σn ≤ τn

{x1 : σ1, . . . , xn : σn} ≤ {x1 : τ1, . . . , xn : τn}

• Width subtyping: this defines the subtyping relation between two records that have different number
of fields.

m ≤ n

{x1 : τ1, . . . , xn : τn} ≤ {x1 : τ1, . . . , xm : τm}

where the ≤ in the premise is integer comparison. Observe that in this case, the subtype has more
components than the supertype. This is analogous to the relationship between a subclass and a
superclass in which the subclass has all the components of the superclass, which it inherits from the
superclass, but perhaps has some components that the superclass does not have.

The depth and width subtyping rules for records can be combined into a single rule:

m ≤ n σi ≤ τi, 1 ≤ i ≤ n

{x1 : σ1, . . . , xn : σn} ≤ {x1 : τ1, . . . , xm : τm}
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5 Subtyping Rules for Variants

Records can be viewed as tagged product types of arbitrary length. The analogous extension for sum types
are called variant records or just variants.

The depth subtyping rule for variants is the same as for records (replacing the records with variants).
However, the width subtyping rule is different. Suppose we used a width subtyping rule of the same form as
for records. Intuitively, if σ ≤ τ , then this implies that anything of type σ can be used in a context expecting
something of type τ . Suppose we now had a case statement that did pattern matching on something of type
τ . Our subtyping relation says that we can pass in something of type σ to this case statement and it will
still work. However, since τ has fewer components than σ and the case statement was originally written for
an object of type τ , there will be values of σ for which no corresponding case exists. Thus, for variants, the
direction of the ≤ symbol in the premise needs to be reversed. In other words, for variants, the subtype will
have fewer components than the supertype.

6 Function Subtyping

Based on the subtyping rules we have encountered so far, our first impulse might be to write down something
of the following form to describe the subtyping relation for functions:

σ ≤ σ′ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

However, this is incorrect. To see why, consider the following code fragment:

let f : σ → τ = g in
let f ′ : σ′ → τ ′ = g′ in

let t : σ′ = v in
f ′(t)

Suppose σ ≤ σ′ and τ ≤ τ ′. By the rule above, we would have σ → τ ≤ σ′ → τ ′, thus we should be able to
substitute f for f ′ and the resulting program should be type correct, provided the original one was. But it
is not: if σ′ is a strict supertype of σ and the value v is of type σ′ but not of type σ, then f will crash, since
it expects an input of type σ and it is not getting one.

Actually, the incorrect typing rule given above was implemented in the language Eiffel, and runtime type
checking had to be added later to make the language type safe.

The correct subtyping rule for functions is:

σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

Note that the ordering on the domain is reversed in the premise. Succinctly stated, a function f of type
σ → τ can safely take any input of any subtype σ′ of σ, and produces a value that can be taken to be of any
supertype τ ′ of τ ; thus we are free to regard f as a function of type σ′ → τ ′.

In all the type constructors we had seen so far, the subtyping relation was preserved. With the function
space constructor, however, the subtyping relation on the domain is reversed. We say that the function type
constructor → is contravariant in the domain and covariant in the range.

7 Subtyping Rules for References

Recall the extensions to the grammar of e and τ for adding support for references:

e ::= · · · | ref e | !e | e1 := e2

τ ::= · · · | τ ref

The typing rules are
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Γ ` e : τ

Γ ` ref e : τ ref

Γ ` e : τ ref

Γ ` !e : τ

Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1 := e2 : 1

As for subtyping, once again our first impulse might be to write down something like the following:

σ ≤ τ

σ ref ≤ τ ref

However, again this would be incorrect. The problem is that to be safe, a ref appearing on the left-hand side
of an assignment operator should be contravariant. Consider the following example:

let x : Square ref = ref square in
let y : Shape ref = x in

(y := circle; (!x).side)

Even though this code type-checks with the given subtyping rule for reference types, it is not type-correct,
since in the last line x does not refer to a square anymore. This problem actually exists in Java when using
arrays, as the designers incorrectly used the rule given above. Consequently, a runtime check is necessary.

public class Test {
public static void main(String[] args) {

B[] b = new B[1];
A[] a = b;
a[0] = new A();

}
}

class A {}
class B extends A {}

Exception in thread ‘‘main’’ java.lang.ArrayStoreException: A
at Test.main(Test.java:5)

In order to overcome this problem we must use the correct rule below:

σ ≤ τ τ ≤ σ

σ ref ≤ τ ref

The subtyping rule for references is thus both covariant and contravariant.
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